Bayesian numerical analysis
CONSIDER: $f(x)=e^{\cosh \left(\frac{x^{2}+5}{\cos (x) 2}\right)}$
WHAT is $\int_{0}^{1} f(x) d x$?
WHAT DOES IT MEAN TO "kNOW A FUNCTIOW"?
IDEA: ADMIT DONT KNow f, PUT A PRION ow fr?)
SAY $f(t) \approx A+C B(t) \quad$ (BROWNIAN MOtion)
OBSERVE: $y_{1}=f(x), \cdots y_{n}=f\left(x_{x}\right)$

$$
f^{l^{y}} \sim A+C B(t) \quad \text { CONDITIoNED }=y_{i} \text { AT } x_{i}
$$

BAYES Rule For f is straight LiNE INTEPOLENT IS IS TRAPAZOID RULE

WAIT THis f is SMOOTH; B.M. WOT MY PRion! OK, USE $f(t) \sim \int_{0}^{t} B(1) d 1$, GET CUBic splines OR, INTEGRAL k times; $2 h+1$ splines

MAYBE THis BAYESIAN APPRohey is Nor so CRAzY
ProGram: TAKE standard NUMERical tasks (QUADRITUAE, INTERMOLATION, MOOTS, MAXimA, ...) AND SEE IF THEY HAVE BAYESIN IWTEantioniml. GOOD

- Possible in high dimensions
- Gives poster ion, wot just bayes rule
- Gives a different way of thinking about N.A. (VERsus, ' k th OLDEn', '\& op Eat Pions')

QUESTIONS

- IS simpsons rule bayes? (NODE)
- Is bim. the only prior giving trapazoid rule?
- Poisson process (any independent increment)
- $C b(t)$ Predicts same, $C \perp b(t)$

THEOREM (Williams) if X_{t} on [ai] has continuous sample paths and predicts like bim. Thew

$$
X_{t} \sim C B(t) \quad \subset \perp B(t)
$$

Why X_{τ} is a martingale use Levy's Characterization

Histony
H. Poincaré (1896)
$f(x)$ UNKNOWN ON \mathbb{R}
Given $f\left(x_{i}\right)=y_{i} \quad 1 \leq i \leq N$
ESTimhte $f(x)$ (INTEADOCATION)
IDEA ASsum $E f(t)=\sum_{j=0}^{\infty} A_{j} x^{j}$
$A_{j} \sim \lambda\left(0, \sigma_{j}^{2}\right)$ so $f(x)$ is gaussian
So $f^{(N)^{19 \cdots y_{N}}}$ is GAUSSiAN
IF $\sigma(x)=\sum_{i=0}^{\infty} \sigma_{i}^{2} x^{j}$

$$
\begin{aligned}
& \hat{f}(x)=a_{1} \sigma\left(x_{1} x\right)+\cdots+a_{N} \sigma\left(x_{N}\right) \\
& a_{i} \operatorname{cH} \cos \sigma N \text { so } \hat{f}\left(x_{i}\right)=y_{i}
\end{aligned}
$$

"Iuse tie method of causes"

WHATS NEW?
LOTS OF APPLICATIONS IN FUNETION SPAEE SETtING
A. STUART (2010) INVERSE PROBLEmS: A BAYESIOW Appronch. ACTA NUMERICA

OBSERVE $y=g(u)+\epsilon$
problem estimate u
here y and u ale functions
Ex (STOKES Equation)

$$
\begin{aligned}
& \frac{\partial v}{\partial t}=v \Delta v-\nabla p+f, \quad(x, t) \varepsilon D \times[0,0) \\
& \nabla \cdot v=0, \quad v=u \text { AT }(b, 0)
\end{aligned}
$$

OBSERVE TRACES $z_{j}(t)=z_{j}(t)+\int_{0}^{t} V\left(z_{j}(t), 1\right) d z$ AT $t_{i} 1 \leqslant i \leqslant I_{1} \quad 1 \leqslant 3 \leqslant 5$ This is y

OBJEET Estimate U GivEN $z_{s}\left(t_{i}\right)$

LOTS OF USEFUL NEW PRIORS
PbLM GIVEN A SET x, FIND $\left\{\begin{array}{l}\text { UstFlu } \\ \text { watural }\end{array}\right.$ prions IWDEXED BY X

Ex $\quad x=C_{2}^{d} \quad \rightarrow$
x ax, $f(x)$ MEASORES 'THROUGH Put'
Fiwd $\max _{x \in *} f(x)$
With a prion, can choose informative observatious SEGUENTIMY
IDEA (YLVISKKEA) USE DYNKIVS ISOMORDALSM:
EXSY TO MAKE (REVEK SIBCE) MARKOV CItaill $\pi(x), K(K, y) \quad(\pi(x) K(x, y)=\pi(y \mid K(y, y))$ IN DENED BY X

$$
G(x, y)=\sum_{n=0}^{\infty} K^{n}(x, y) \quad \text { (NEED K ABSOnSIWG) }
$$

$G(x y)$ is P.D. SO THE COVAR IANLE OF A GAUSSIAN FLELD

$$
\begin{gathered}
\text { ?SO WHAT? } \\
E\left(X_{v} \mid X_{A}, \text { sis }\right)=\sum_{\text {ats }} C_{x} X_{A} \\
C_{A}=P\left\{X_{y} \text { staten AT } x_{1} \text { fiastitits s iv } A\right\}
\end{gathered}
$$

Point, $\tau_{A} \geq 0$, covariances positive Then is a Converse

Point: if tile underlying markov chain is N.N. RANDOM WALK OW A GRADE THEN X_{x} is the Gaussian fag field AN OBJECT OF INTENSE STUDY IN MODERN Probability

Point: there ane now gaussian analogs

STEVE EVEWS AND I have a dual constanction) WHITH Gives NEGETIVE Covanian CES (AMD All sonts OF NICE PROPEATIES):
LET $\pi(x), K(x, y)$ BE REVERSIBLE ON (EMiJE) \boldsymbol{x} :
FOMm A Gafdh on x wirt $\gamma_{\sim} y \Leftrightarrow k(r, y)>0$
Cloose an onientation $\epsilon_{r y}= \pm 1$ each edab

- Put a mean o, van rol k(riv) ghassian ow Ench eosezana) SET $Z_{x}=\sum_{j} \in\left(x_{y}\right) Z_{i y}$

- If $K(x, y)=0 \operatorname{cov}\left(z_{1,} z_{y}\right)=0$

$$
\begin{gathered}
z_{1}=z_{51}-z_{12} \\
z_{2}=z_{12}-z_{23} \\
\vdots
\end{gathered}
$$

With Khare, we have similan proless with Geweral sen pattenn, on geweral spaces

Figure 2.1: Signs of realizations of various Gaussian fields for a 30×30 grid (with a different sign matrix) (a) Dynkin's construction (b) Generalized Dynkin's construction (c) Diaconis-Evans' construction (d) Generalized Diaconis-Evans' construction.

QUESTIONS

- is there a prior giving even order splines (THE HALF INTEGRAL DOES' WORK)
- Characterize $f(t) \sim \int_{0}^{t}$ bela ala hanwes's
- More generally, when does the bayes rule characterize the parol?
- Design: use prion to say whee e to tate OBSERVATIONS.
ley. $f^{(x)} \sim B(E)$ on $[0,1]$ TO Estimate $I=\int_{0}^{1} f(a) d x$. BEST x POINTS ANE $\frac{2 i}{2 x+1} \quad 1 \leq i \leq n$ eq $n=2, \frac{2}{5}, \frac{4}{5}$
- try these things out (its easter to prove theorems than to do serious examples)

