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Differential equations are ubiquitous in many areas of Science 
and Engineering.

Allow us to describe complex behaviour with few but readily 
interpretable parameters.

Particularly useful for modelling natural phenomena in terms of 
the rates of change of components in a dynamical system.



In many cases, particularly in biology, we only have observed 
and noisy data for the output of the system - we don’t know the 

true input parameter values.



• Often sparse, uncertain data with unobserved species

• Often multiple network topologies consistent with the 
known biology



We can adopt a Bayesian approach to characterise the 
uncertainty and make inferences about parameters values and 

underlying structure of the system

- define an error model and prior

- Run your favourite MCMC algorithm, 
e.g. Riemannian Manifold MCMC (B.C., PhD Thesis, 2011)

- Calculate marginal likelihoods for model comparison
e.g. thermodynamic integration, Chib’s method etc.



• Which parameters should we use for a given 
model?

• Which model structure is most appropriate to 
describe the system of interest? 
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Nonlinear dynamics, correlation structure, identifiability...
all create problems for standard MCMC.



In the Bayesian formalism, the posterior distribution 
characterises the uncertainty in the parameters

1.4 Monte Carlo Methods

and rational framework for making sense of the world around us, letting us explicitly

state our assumptions and update our current knowledge in light of newly acquired

data.

Probability theory has been around since the 18th century (16, 51) as a means of

making inferences in light of incomplete information. The axiomatic formulation of

probability theory by Kolmogorov (110), together with a derivation by Cox (39) from a

set of postulates that satisfy the desirable properties we would wish to have in a system

of reasoning, have made Bayesian methods arguably the preferred method for inductive

inference. Recent contributions by Knuth and Skilling (180) add further support for

the use of Bayesian probability; based on symmetry assumptions, they show that one is

led to the probability calculus as the only logical and consistent calculus for reasoning

under uncertainty.

Bayes theorem is simply an expression based on conditional probability and it states

the conditional probability of an event A given an event B in terms of the probability of

A, and the probability of B given A. In the context of a statistical model, the posterior

distribution of the model parameters, ✓ = [✓
1

...✓D]T , given the data, y = [y
1

...yN ]T , is

proportional to the prior distribution of the parameters multiplied by the likelihood of

the data given the parameters.

p(✓|y) = p(y|✓)p(✓)
p(y)

=
p(y|✓)p(✓)R
p(y|✓)p(✓)d✓

(1.3)

Here the marginal likelihood in the denominator normalises the posterior density, such

that it integrates to one and is a correctly defined probability distribution.

1.4 Monte Carlo Methods

For the purpose of making predictions, we often want to calculate expectations of a

function with respect to the posterior distribution

µf = Ep(✓|y)(f(✓)) =

Z
f(✓)p(✓|y)d✓ (1.4)

Since calculating an expectation is essentially just the same task as evaluating an

integral, we could use quadrature methods and other numerical integration schemes.

9

We can consider an MCMC approach the “gold standard” as we 
can calculate quantities to arbitrary precision, given sufficient 

samples

The challenge:  How do we do this most efficiently?



Employing a system of ODEs as a statistical model, we can 
define the log-likelihood as

Note the assumption that the solution to the ODEs is exact!



- Majority of differential equations do not have analytical 
solutions and must be solved numerically

- Deterministic solutions approximately satisfy the model 
dynamics to within a given error tolerance

- For parameter inference/estimation we make the assumption 
that the numerical solution is the true solution



- Majority of differential equations do not have analytical 
solutions and must be solved numerically

- Deterministic solutions approximately satisfy the model 
dynamics to within a given error tolerance

- For parameter inference/estimation we make the assumption 
that the numerical solution is the true solution

Is there a way of solving differential equations in a statistical 
manner that more fully characterises the uncertainty in the 

numerical solution?



Main Idea

Develop a sequential Bayesian numerical integrator for solving 
systems of differential equations using Gaussian processes.



Main Idea

Develop a sequential Bayesian numerical integrator for solving 
systems of differential equations using Gaussian processes.

First proposed by John Skilling in 1991 in a conference 
paper, however only for very simple ODEs and not 
computationally efficient.  There does not appear to have 
been any further work in this area since then.



Why solve differential equations probabilistically?

- Can choose how much computational effort to put into the 
solution and fully characterise the uncertainty in the 
approximate solution

- Uncertainty in the solution may be propagated through the 
rest of a Bayesian analysis

- Could choose function evaluation points in a principled 
manner based on the variance of the predicted solution at any 
point



Recap: Numerically solving ordinary differential equations

We may solve this approximately using a numerical method.  
e.g. Euler’s method, Runge-Kutta, many others...

xn+1 = xn + ✏f✓(xn)

Many sophisticated, high speed solvers are available.  After 
many iterations we obtain a solution that approximates the true 
solution to with a specified error tolerance.



In this work we shall model the derivative of the solution as a 
Gaussian process (using the original notation of Skilling)

using the representation as a convolution of a Gaussian white 
noise process, h, and some integrable kernel function, R.

= Rh(t)

x(t) = l(t) +Qh(t)

where  Q is the integrated kernel function

and the choice of function                          is a modelling step 

to allow us to satisfy boundary conditions.

ẋ(t) = l̇(t) +

Z 1

�1
R(z, t)h(z)dz

Q(t, z) =

Z t

a
R(x, z)dx

l(t) =

Z t

a
l̇(x)dx



Goal:  to obtain the posterior distribution of the solution 
process given a sequence of vector field evaluations

For given model parameters, we assume that the vector field 
evaluations are noisy measurements of the solution derivative 
function at chosen evaluation points.



Using the notation:

Assuming Gaussian error model, posterior follows in the 
standard form,

where the means for the standard and integrated GP 
posteriors follow as,

and the covariances as,



Solving ordinary differential equations is inherently sequential, 
and we propose the following scheme:

1. Conditional on initial states and model parameters, obtain 
the first derivative observation by evaluating the vector field at 
the initial state value.

2. Predict the next state value based on the derivative 
observation.

3. Re-estimate the solution in the state space and use the state 
prediction to obtain the second derivative observation.



In practice, every time we iterate, the number of data points 
increases by one.  At every iteration we must re-evaluate the 
predictive GP posterior distributions, which becomes very slow 
using the standard approach because of required matrix 
inversion.

An interesting difference with traditional methods is that steps 
are made not according to a deterministic rule, but rather from 
a predictive distribution.



In practice, every time we iterate, the number of data points 
increases by one.  At every iteration we must re-evaluate the 
predictive GP posterior distributions, which becomes very slow 
using the standard approach because of required matrix 
inversion.

An interesting difference with traditional methods is that steps 
are made not according to a deterministic rule, but rather from 
a predictive distribution.

To whet your appetite... in our paper, we

- provide a recursive formulation which avoids matrix inversion 
around an order of magnitude faster.

- show that our probabilistic solver is a consistent estimator of 
the true solution for the initial value problem



An Example

FitzHugh-Nagumo system describes the dynamics of action 
potential generation within a nerve axon.

Interesting test model - oscillatory dynamics, sharp changes in 
derivatives and multimodality in posterior distribution when 
doing Bayesian inference.



An Example

The numerical (solid line) and mean probabilistic (dashed line) 
solutions for the FitzHugh-Nagumo system for a particular set 
of parameters.  The grey bands show 2 standard deviations 
around the probabilistic solution mean. 

The numerical solution was obtained via the ode45 function in 
MATLAB with error tolerances of 10^-3 . The probabilistic 
solution was constructed using 300 solver knots and auxiliary 
parameters were sampled using MCMC.



Fully Probabilistic Inference

In this case we simulate observations from the numerical 
solution of the FitzHugh-Nagumo model with model parameters 
(0.2, 0.2, 3) and initial conditions (-1, 1).  We add some 
Gaussian noise and employ Bayesian inference to obtain 
posterior distributions over the ODE model parameters and 
initial conditions.



Model parameters and initial conditions



Auxiliary parameters - GP prior-precision and lengthscale.



Extensions

It is relatively straightforward to extend this work to delay 
differential equations, where we must infer an initial function 
instead of initial values.

The use of sparse covariance functions could speed up 
inference, as could maximum likelihood estimation of auxiliary 
hyperparameters.

Investigation of the impact of alternative kernels/covariance 
functions on the accuracy of the solver.

Adaptive selection of time steps based on predicted variance 
and required accuracy of the solution.



CONCLUSIONS

• Rather than using a single deterministic solution, a 
probabilistic approach provides a family of such solutions 
with associated probability distribution

• This functional uncertainty in the solution (i.e. solver 
uncertainty) may be propagated through the rest of the 
inference framework

• The sequential nature of the GP estimator leads to a 
recursive implementation that avoids expensive matrix 
inversions
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