
Trade-Offs
in Robot Skill 

Learning

Jan Peters
Technische Universität Darmstadt

Max Planck Institute 
for Intelligent Systems 



Source: Movie iRobot

Can we 
create such 

robots?

Motivation
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Motivation

Adapt to humans
Programming complexity 

beyond human imagination
Uncertainty in tasks 

and environment 

How can we fulfill Hollywood’s vision of future robots?
• Smart Humans? Hand-coding of behaviors has allowed us to go very far! 
• Maybe we should allow the robot to learn new tricks, adapt to situations, refine skills?
•  Why have “Off-the-shelf” machine learning approaches not delivered the need 

intelligence?

➡ We trade-off between autonomy, human insight and behavior quality to get close!
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Trade-Offs in Robot Skill Learning
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Example

Internal and external state     ,  action     .utxt
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Environment:  An action     causes the system
to change state from       to         .    xt xt+1

ut

Modeling Assumptions

xt+1xt

ut

rt

xt+1 � p(xt+1|xt,ut)Model in the real world: 

Policy: Generates action     in state    .ut xt

Teacher:  Evaluates the performance and 
rates it with     .rt
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Should we use a deterministic policy                   ?
ut = ⇡(xt)

ut � ⇥(ut|xt) = p(ut|xt, �)Hence, we use a stochastic policy:

NO! Stochasticity is important:
- needed for exploration
- breaks “curse of dimensionality”
- optimal solution can be stochastic

Robot learning
implies “policy
optimization”!



Let the loop roll out!

Trajectories

Path distributions

Path rewards:

� = [x0,u0,x1,u1 . . . ,xT�1,uT�1,xT ]

r(� ) =
T�

t=0

�tr(xt,ut)

xt

ut

rt
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ut+2

xt+2

rt+2

xt+1

ut+1

rt+1

...

...

...

xt+1

p(⇥) = p(x0)
T�1Y

t=0

p(xt+1|xt,ut)�(ut|xt)



What is learning?

9

Peters & Schaal (2003). 
Reinforcement Learning 
for Humanoid Robotics, 
HUMANOIDS

In our model:
Optimize the expected scores

of the teacher.

J(�) = E⌧{r(⇥)} =

Z

T
p✓(⇥)r(⇥)d⇥

Learning means optimization of behavior

 based on data!

What is robot learning?
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Trade-Off 1: Physical Knowledge vs 
Generality 

Use all physics... Learn everything...
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Trade-Off 1: Physical Knowledge vs 
Generality 

Use all physics... Learn everything...

• Physical knowledge is extremely powerful!

• Physics yields general solutions!

• Physics can explain itself!

• Handcrafting with Physics Knowledge can be easy
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Trade-Off 1: Physical Knowledge vs 
Generality 

Use all physics... Learn everything...

• Physical knowledge is extremely powerful, but ...

• ...classical robotics as well as classical AI have failed at encoding 
the whole world with unlimited precision.

• ...all physical models are wrong (but some are useful)

• learning allows for higher accuracy, robustness and autonomy!
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Trade-Off 1: Physical Knowledge vs 
Generality 

Use all physics... Learn everything...

Physical Model Offline Trained Model Online Trained

Learning beats physical knowledge if we extract 
crucial features...

Lesson: We need a physics-based blue print!

Optimal Trade-Off

Nguyen-Tuong & 
Peters, ARJ 2010
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A Physics-inspired Blue Print
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Use all physics... Learn everything...
Optimal Trade-Off

Local Linear
Model Approx.

Canonical 
Dynamics

Trajectory Plan
Dynamics

Linear in learnable 
Policy Parameters

Task/Hyperparameter



Imitation Learning

• match given path distribution 
p(τ) with a new one pθ(τ), i.e., 

• only adapt the policy 
parameters θ

• model-free, purely sample-
based

• results in one-shot and 
expectation maximization 
algorithms

Given a physics-based policy, can we reproduce a path 
distribution?

D(p�(� )||p(� ))� min

Ac
tio

ns

States

* *
** *

**

** *

* *

Imitation 
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Acquisition by Imitation
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Trade-Off II: Information Loss vs Self-
Improvement

Experience High Reward



Reinforcement Learning

• Goal: maximize the return of the paths r(τ) generated by path 
distribution pθ(τ)! 

• Optimization function is the expected reward

• This optimal control problem has no data in it!

• This part usually results into a greedy, softmax updates or a 
`vanilla’ policy gradient algorithm...

Given a path distribution, can we find the optimal policy?

J(�) =
�

T
p�(⇥ )r(⇥ )d⇥
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Success Matching

“When learning from a set of their own trials in iterated decision problems, 
humans attempt to match not the best taken action but the reward-weighted 

frequency of their actions and outcomes” (Arrow, 1958).

Ac
tio

ns

States

+ Succes (high reward)    - Failure (low reward)

Observed or Exploratory Policy

+ +
++ +++

--
-

- -
Reward

+ +
++ +

++

--
-

- -
Ac

tio
ns

States

 New Policy
Match

Successes

Can we create better policies by matching the reward-
weighted previous policy ?

23Many related frameworks, e.g., (Dayan&Hinton 1992;Andrews,’03;Attias,’04;Bagnell,’03;Toussaint,’06;...).



Illustrative Example

Foothold Selection

Match successful footholds! 24



What about the new cost 
function?

Does the new goal function help?

• We have a lower bound

• Having taken a low reward trajectory many times resembles 
having taken a high reward trajectory once!

➡ A safe way of trading experience against reward! 

log J(�) = log
�

p(⇥ )
p(⇥ )

p�(⇥ )r(⇥ )d⇥ ,

⇥
�

p(⇥ )r(⇥ ) log
p�(⇥ )
p(⇥ )

d⇥ ⇤ �D(p�(⇥ )||p(⇥ )r(⇥ )),

25
Experience High Reward

Safe but unclear Trade-Off



Reinforcement Learning
by Reward-Weighted Imitation

Matching successful actions corresponds to minimizing the Kullback-Leibler ‘distance’  

➡This minimization can be shown to correspond to optimizing a lower bound on the 
expected return!

D(p�(� )||r(� )p(� ))� min

Second Policy
Third Policy

Policy Parameters

Ex
pe

ct
ed

 R
et

ur
n

Initial Policy

Expected Return
1st Lower Bound 

2nd Lower Bound 
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For a Gaussian policy                                                       , we get the update rule

➡Reduces Reinforcement Learning onto Reward Weighted Regression!

θk+1 = (ΦT
RΦ)−1

Φ
T
RU

New Policy Parameters Features  φ(s) Rewards r(x,u)

�(u|x) = N (u|⇥(x)T �,⇥2I)

Actions 

Peters & Schaal (2007). Policy Learning for Motor Skills, International Conference on Machine Learning (ICML)
Kober & Peters (2009). Policy Search for Motor Primitives in Robotics, Advances in Neural Information Processing Systems (NIPS)



Self-Improvement by 
Reinforcement Learning
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More focussed trade-off?
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Experience High Reward
EM-like Methods: Safe but unclear Trade-Off

Peters, Muelling, Altun (2010). Relative Entropy Policy Search, AAAI

REPS: Adjustable Trade-Off

Maximize reward

Probability distribution

Follow system dynamics

Close to training data (no 
wild exploration)

Relative Entropy Policy Search (REPS)
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Trade-Off III: Large Repertoire vs 
Parsimonious Behavior Representation

Versatility Parsimony

• Versatility: Complex behaviors rely on a combination of as 
many strategies as possible.

• Parsimony: Multiple, distinct solutions are required for efficient 
learning.



Versatility with Many Primitives
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Maximize reward

Probability distribution

Follow system dynamics

Close to training data (no 
wild exploration)

Relative Entropy Policy Search (REPS)



A Physics-inspired Blue Print
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Hierarchies with Primitives
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Gating network

Daniel, Neumann & Peters (2012). Hierarchical Relative Entropy Policy Search, AI-Stats



Versatility with Many Primitives
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Maximize reward

Probability distribution

Follow system dynamics

Close to training data (no 
wild exploration)

“Naive” Extension of REPS

Daniel, Neumann & Peters (2012). Hierarchical Relative Entropy Policy Search, AI-Stats



Need for Separation
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Iteration 3 Iteration 6 Iteration 9Iteration 0

Daniel, Neumann & Peters (2012). Hierarchical Relative Entropy Policy Search, AI-Stats

If all primitives are equally responsible, we can represent 
versatile behavior but it will never be parsimonious.



Versatility with Many Primitives
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Maximize reward

Probability distribution

Follow system dynamics

Close to training data (no 
wild exploration)

Force the primitives to 
limited responsibility

Hierachical Relative Entropy Policy Search (HiREPS)

Daniel, Neumann & Peters (2012). Hierarchical Relative Entropy Policy Search, AI-Stats

High 
entropy 
indicates
overlap!



Localized behavior can be learned
efficiently!
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Iteration 3 Iteration 6 Iteration 9Iteration 0

We can reduce to the number of needed primitives!

Daniel, Neumann & Peters (2012). Hierarchical Relative Entropy Policy Search, AI-Stats



C. Daniel | IAS -  TU Darmstadt | 10. 10. 2012 IROS 19

String

Pole

Barrett 
WAM

Target Zone

2 Options

Daniel, Neumann & 
Peters (2012). 
Hierarchical Relative 
Entropy Policy Search, 
AI-Stats
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Daniel, Neumann & Peters (2012). 
Hierarchical Relative Entropy 
Policy Search, AI-Stats

Good performance

Fast reduction in 
the number of 

primitives

Versatility Parsimony
Adjustable Trade-Off



Demonstrations

K.Mülling, J.Kober, O. Krömer, J.Peters (accepted). Learning to Select and Generalize Striking Movements in 
Robot Table Tennis, International Journal of Robotics Research



Select & Generalize

K.Mülling, J.Kober, O. Krömer, J.Peters (accepted). Learning to Select and Generalize Striking Movements in 
Robot Table Tennis, International Journal of Robotics Research



Self-Improvement

K.Mülling, J.Kober, O. Krömer, J.Peters (accepted). Learning to Select and Generalize Striking Movements in 
Robot Table Tennis, International Journal of Robotics Research



Current Gameplay

K.Mülling, J.Kober, O. Krömer, J.Peters (accepted). Learning to Select and Generalize Striking Movements in 
Robot Table Tennis, International Journal of Robotics Research
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Conclusion

• Motor skill learning is a promising way to avoid programming 
all possible scenarios and continuously adapt to the 
environment.

• To make it work, we always have to trade-off at least:

• Physical Knowledge vs Learning

• Experienced vs High Rewards

• Versatility vs Parsimony

• There are many more trade-offs in practice.
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