Trade-Offs

in Robot Skill
Learning

Jan Peters
Technische Universitdt Darmstadt

Max Planck Institute
for Intelligent Systems

&5 TECHNISCHE ¥
Ji7//~\ UNIVERSITAT
%@r DARMSTADT




% Motivation

| e -~ |
create such -
robots!

= C—
— e

Source: Movie iRobot 2



Motivation

Adapt to humans — * "
Programming complexity

and environment beyond human imagination

Uncertainty in tasks

How can we fulfill Hollywood’s vision of future robots!?
® Smart Humans! Hand-coding of behaviors has allowed us to go very far!
® Maybe we should allow the robot to learn new tricks, adapt to situations, refine skills?
®  Why have “Off-the-shelf”” machine learning approaches not delivered the need
intelligence?

=) \We trade-off between autonomy, human insight and behavior quality to get close!



Trade-Offs in Robot Skill Learning

Behavior Efficiency of
Quality Generation

Trade-Offs
In
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Example

Internal and external state x;, action u..



Modeling Assumptions

Policy: Generates action u; in state X;.

00—

Should we use a deterministic policy u; = 7(x;)?

Stochasticity is important:
- needed for exploration
- breaks “curse of dimensionality”
- optimal solution can be stochastic

Hence, we use a stochastic policy: u; ~ 7 ( ut\xt)

Teacher: Evaluates the performance and
rates it with 7.

Environment: An action u; causes the system
to change state from X; to X;i1.

Model in the real world: X¢4+1 ~~ p(Xt+1‘Xt> ut)



Let the loop roll out!

° —_— @—> @ —> .. Trajectories

l / l / l / T:[Xo,uo,Xl,ul...,XT_l,uT_l,XT]

Q @ @ Path distributions

p(T) = p(Xo) 1:[ P(Xgp1]Xe, wg ) (ug |x¢)
l l l Path rewards:

Q @ @ r(rT) = ;T%at?“(Xta uy)




. What is robot learning?

"‘*‘%
\
J I AN

In our model:
Optimize the expected scores

J(0) = E.{r(r)} = /T po (7)1 (7)dr

of the teacher.

Peters & Schaal (2003).
Reinforcement Learning

for Humanoid Robotics,
HUMANOIDS
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Trade-Off |: Physical Knowledge vs
Generality

Use all physics... #-—ammmee—em$p | carn everything...



Trade-Off |: Physical Knowledge vs
Generality

® Physical knowledge is extremely powerful!
® Physics yields general solutions!
® Physics can explain itself!

® Handcrafting with Physics Knowledge can be easy

12



Trade-Off |: Physical Knowledge vs
Generality

® Physical knowledge is extremely powerful, but ...

® _ .classical robotics as well as classical Al have failed at encoding
the whole world with unlimited precision.

® _.all physical models are wrong (but some are useful)

® learning allows for higher accuracy, robustness and autonomy!

13



~ Trade-Off |: Physical Knowledge vs
g“"”\\ gf@ Generality

Optimal ade-Off
. Learn eve rything...

Use all physics...

Learning beats physical knowledge if we extract
crucial features...

Physical Model Offline Trained Model Online Trained

Lesson: We need a physics-based blue print! Pt AR 2010 14
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A Physics-inspired Blue Print

Primitives!

|5



A Physics-inspired Blue Print

Use all physics... = =~3p | earn everything...

Task/Hyperparameter

Trajectory Plan -
Dynamics v=o(f(x,v)+z)

where Linear in learnable

Canonical »=o,(B,(g— x)—v) Policy Parameters
— Dynamics

Local Linear
Model Approx.




Imitation Learning

Given a physics-based policy, can we reproduce a path
distribution?

D(pg(T)||p(7)) — min Imitation

® only adapt the policy )
parameters O

® model-free, purely sample-
based

® results in one-shot and
expectation maximization States

: —>

algorithms

Actions

|7



Acquisition by Imitation
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Trade-Offs in Robot Skill Learning

. Physics-knowledge .
Behavior in the representation Efficiency of

Quality Generation

Online Learning

for higher Accuracy Trad e'OffS
In

Robot Learning

Sufficiently general representations

Autonomy & Generality 19
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Trade-Off |l: Information Loss vs Self-
Improvement

21



Reinforcement Learning

Given a path distribution, can we find the optimal policy?

® Goal:

® Optimization function is the expected reward

7(6) = /T po(T)r(T)dT

® This optimal control problem has no data in it!

® This part usually results into a greedy, softmax updates or a
‘vanilla’ policy gradient algorithm...

22



Success Matching

“When learning from a set of their own trials in iterated decision problems,

humans attempt to match not the best taken action but the reward-weighted
frequency of their actions and outcomes” (Arrow, 1958).

Can we create better policies by matching the reward-
weighted previous policy ?

Observed or Exploratory Policy

N A New Policy
» Match @ -
o Successes e
- Q
2 <

* e

States
9

L 3
“ *

= Failure (low reward)

Many related frameworks, e.g., (Dayan&Hinton 1992;Andrews,’03;Attias,’04;Bagnell,’03;Toussaint,’06;...). 23



lllustrative Example
Foothold Selection

Match successful foothls!

24



What about the new cost
function?

Does the new goal function help!?

* We have a

log J(@) = log/%pg(T)T(T)dT,

. / p(7)r(7) log fjj((:)) a7 o —D(pe(7)||p(T)r (7)),

* Having taken a low reward trajectory many times resembles
having taken a high reward trajectory once!

= A safe way of trading experience against reward!

Experience #— ¥ High Reward

25



Reinforcement Learning
by Reward-VWeighted Imitation

Matching successful actions corresponds to minimizing the Kullback-Leibler ‘distance’
D(po ()|r()p(r)) — min

For a Gaussian policy 7(u|x) = N (u|¢(x)? 0, 0°I), we get the update rule

Opy1 = (<I>TR<I>)—1<I>TR

New Policy Parameters Features Rewards Actions

Peters & Schaal (2007). Policy Learning for Motor Skills, International Conference on Machine Learning (ICML)
Kober & Peters (2009). Policy Search for Motor Primitives in Robotics, Advances in Neural Information Processing Systems (NIPS) 26



Self-Improvement by
Reinforcement Learning

Kober & Peters (2009). Policy Search for
Motor Primitives in Robotics, NIPS

N
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More focussed trade-off?

® »—3 High Reward
able Trade-Off

Experience -
REPS: Adjust

Relative Entropy Policy Search (REPS)

s)7(als) Close to training data (no
q(s,a) wild exploration)

Peters, Muelling, Altun (2010). Relative Entropy Policy Search, AAAI

28



Trade-Offs in Robot Skill Learning

Behavior Initial Demonstrations Efficiency of
Quality Generation
Highly rewarded Slow Loss of
behaviors! Trade-OffS (Bad) Experience
Safe Learning In
Approaches :
oy Reraining Robot Learning
Experience!

Autonomy & Generality 29
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Trade-Off lll: Large Repertoire vs
Parsimonious Behavior Representation

Versatility: Complex behaviors rely on a combination of as
many strategies as possible.

Parsimony: Multiple, distinct solutions are required for efficient
learning.

31



Versatility with Many Primitives

Relative Entropy Policy Search (REPS)

1" (8)m(als) Follow system dynamics

p"(s)m(als) Close to training data (no
q(s,a) wild exploration)

32



A Physics-inspired Blue Print

-~ -

Task Parameters

?nd . .
A Activation Desired

Behavior s

ﬁ ' .
Cortext » Learning
’

Current State
Command

33



Hierarchies with Primitives

Daniel, Neumann & Peters (2012). Hierarchical Relative Entropy Policy Search, Al-Stats 34



Versatility with Many Primitives

“Naive” Extension of REPS

Rsa Maximize reward

m(a;0|8) Probability distribution

Z Psart” ( m(o|s) Follow system dynamics

8,a.,0

i u™(s)m(a,ols) Close to training data (no
€2 ), u"(s)m(a,ols)log q(s,a,0) wild exploration)

8,a,0

Daniel, Neumann & Peters (2012). Hierarchical Relative Entropy Policy Search, Al-Stats 35



Need for Separation
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If all primitives are equally responsible, we can represent
versatile behavior but it will never be parsimonious.

Daniel, Neumann & Peters (2012). Hierarchical Relative Entropy Policy Search, Al-Stats
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Versatility with Many Primitives

Hierachical Relative Entropy Policy Search (HiREPS)

a,0|8)Rse Maximize reward

m(a;0|8) Probability distribution

Z Pss 1" (8)m(alo,8)m(0|s) Follow system dynamics

u"(s)(a, ()Is) Close to training data (no

Z " (s)m(a,o|s)log

High q(s,a wild exploration)

8,a,0
.en'.crOP)' T {Z g A Force the primitives to
indicates [EEEEt PROIS, @) F06 PAOIS: @) | limited responsibility
overlap! .

Daniel, Neumann & Peters (2012). Hierarchical Relative Entropy Policy Search, Al-Stats 37



Localized behavior can be learned
efficiently!

lteration O 'teration 3 lteration 6 'teration 9

We can reduce to the number of needed primitives!

Daniel, Neumann & Peters (2012). Hierarchical Relative Entropy Policy Search, Al-Stats 38
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Daniel, Neumann &
Peters (2012).
Hierarchical Relative

\ | Entropy Policy Search,
: i ) Al-Stats



Versatility #mmmmmnmmm— Parsimony

Tetherball average reward achieved

Good performance

"Naive" Approach
—e— HIREPS
--=-REPS

20 30 40 50
Iteration

Tetherball # of options used

Average Reward

Fast reduction in
the number of
primitives

# Options

"Naive" Approach
—e— HIREPS

Daniel, Neumann & Peters (2012).
Hierarchical Relative Entropy
Policy Search, Al-Stats Iteration




Demonstrations

Demonstrations
with Kinesthetic Teach-In

K.Mdlling, J.Kober, O. Kromer, J.Peters (accepted). Learning to Select and Generalize Striking Movements in
Robot Table Tennis, International Journal of Robotics Research



Select & Generalize

From Imitation Learning
we obtain 25 Movement
Primitives

K.Mdlling, J.Kober, O. Kromer, J.Peters (accepted). Learning to Select and Generalize Striking Movements in
Robot Table Tennis, International Journal of Robotics Research



Self-Improvement

K.Mdlling, J.Kober, O. Kromer, J.Peters (accepted). Learning to Select and Generalize Striking Movements in
Robot Table Tennis, International Journal of Robotics Research



Current Gameplay

Final Challenge:
Match against a Human

K.Mulling, J.Kober, O. Krémer, J.Peters (accepted). Learning to Select and Generalize Striking Movements in
Robot Table Tennis, International Journal of Robotics Research



Trade-Offs in Robot Skill Learning

Behavior Efficiency of
Quality Generation

Versatility Trad e'OffS Parsimonity
In
Robot Learning

Autonomy & Generality
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Conclusion

® Motor skill learning is a promising way to avoid programming
all possible scenarios and continuously adapt to the

environment.
® To make it work, we always have to trade-off at least:
® Physical Knowledge vs Learning
® Experienced vs High Rewards
® Versatility vs Parsimony

® There are many more trade-offs in practice.

47
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