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Probabilistic Modelling

• A model describes data that one could observe from a system

• If we use the mathematics of probability theory to express all

forms of uncertainty and noise associated with our model...

• ...then inverse probability (i.e. Bayes rule) allows us to infer

unknown quantities, adapt our models, make predictions and

learn from data.



Bayesian Modelling

Everything follows from two simple rules:

Sum rule: P (x) =
∑
y P (x, y)

Product rule: P (x, y) = P (x)P (y|x)

P (θ|D,m) =
P (D|θ,m)P (θ|m)

P (D|m)

P (D|θ,m) likelihood of parameters θ in model m

P (θ|m) prior probability of θ

P (θ|D,m) posterior of θ given data D

Prediction:

P (x|D,m) =

∫
P (x|θ,D,m)P (θ|D,m)dθ

Model Comparison:

P (m|D) =
P (D|m)P (m)

P (D)

P (D|m) =

∫
P (D|θ,m)P (θ|m) dθ



Learning Model Structure

How many clusters in the data?

What is the intrinsic dimensionality of the data?

Variable selection: is some variable relevant to predicting another?

What is the order of a dynamical system?

How many states in a hidden Markov model?
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How many hidden sources in the input?

What is the structure of a graphical model?
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Bayesian Nonparametrics



Why...

• Why Bayesian?

Simplicity (of the framework)

• Why nonparametrics?

Complexity (of real world phenomena)



Parametric vs Nonparametric Models

• Parametric models assume some finite set of parameters θ. Given the parameters,
future predictions, x, are independent of the observed data, D:

P (x|θ,D) = P (x|θ)

therefore θ capture everything there is to know about the data.

• So the complexity of the model is bounded even if the amount of data is
unbounded. This makes them not very flexible.

• Non-parametric models assume that the data distribution cannot be defined in
terms of such a finite set of parameters. But it can often be defined by assuming
an infinite dimensional θ. Usually we think of θ as a function.

• The amount of information that θ can capture about the data D can grow as
the amount of data grows. This makes them more flexible.



Why nonparametrics?

• flexibility

• better predictive performance

• more realistic
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All successful methods in machine learning are essentially nonparametric1:

• kernel methods / SVM / GP

• deep networks / large neural networks

• k-nearest neighbors, ...

1or highly scalable!



Examples of non-parametric models

Parametric Non-parametric Application
polynomial regression Gaussian processes function approx.
logistic regression Gaussian process classifiers classification
mixture models, k-means Dirichlet process mixtures clustering
hidden Markov models infinite HMMs time series
factor analysis / pPCA / PMF infinite latent factor models feature discovery
...



Gaussian and Dirichlet Processes

• Gaussian processes define a distribution on functions
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f ∼ GP(·|µ,K)

where µ is the mean function and K is the covariance function (kernel).
We can think of GPs as “infinite-dimensional” Gaussians

• Dirichlet processes define a distribution on distributions

G ∼ DP(·|G0, α)

where α > 0 is a scaling parameter, and G0 is the base measure.
We can think of DPs as “infinite-dimensional” Dirichlet distributions.

Note that both f and G are infinite dimensional objects.



Gaussian Processes and SVMs



Support Vector Machines and Gaussian Processes

We can write the SVM loss as: min
f

1

2
f>K−1f + C

∑

i

(1− yifi)+

We can write the negative log of a GP likelihood as:
1

2
f>K−1f −

∑

i

ln p(yi|fi) + c

Equivalent? No.

With Gaussian processes we:

• Handle uncertainty in unknown function f by averaging, not minimization.

• Compute p(y = +1|x) 6= p(y = +1|f̂ ,x).

• Can learn the kernel parameters automatically from data, no matter how
flexible we wish to make the kernel.

• Can learn the regularization parameter C without cross-validation.

• Can incorporate interpretable noise models and priors over functions, and can
sample from prior to get intuitions about the model assumptions.

• We can combine automatic feature selection with learning using ARD.

Easy to use Matlab code: http://www.gaussianprocess.org/gpml/code/
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Logistic 
Regression

Linear  
Regression

Kernel  
Regression

Bayesian 
Linear  

Regression

GP  
Classification

Bayesian 
Logistic  

Regression

Kernel  
Classification

GP 
Regression

Classification

Bayesian
Kernel



Moving beyond GPs and DPs

Bayesian nonparametrics applied to models of other structured objects:

• Sparse Matrices

• Overlapping clusters

• Networks

• Exchangeable Arrays

• Covariances

• Hierarchies



Sparse binary matrices and the Indian buffet process

Figure 5: Binary matrices and the left-order

znk = 1 means object n has feature k:

znk ∼ Bernoulli(θk)

θk ∼ Beta(α/K, 1)

• Note that P (znk = 1|α) = E(θk) = α/K
α/K+1, so as K grows larger the matrix

gets sparser.

• So if Z is N×K, the expected number of nonzero entries is Nα/(1+α/K) < Nα.

• Even in the K → ∞ limit, the matrix is expected to have a finite number of
non-zero entries.

• K →∞ results in an Indian buffet process (IBP)



Nonparametric Binary Matrix Factorization

genes × patients
users × movies

Meeds et al (2007) Modeling Dyadic Data with Binary Latent Factors.



The Big Picture:
Relations between some models
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Factorial models allow data points to belong to multiple overlapping clusters
simultaneously, or equivalently have a factored state space.



Networks

[very brief, as I am speaking in the Social Network and Social Media Workshop this afternoon]



Modelling Networks

We are interested in modelling networks.

Real Networks Are Complex

Taken from Barabasi & Oltvai, 2004. A protein-protein interaction

network of budding yeast.

CBL: Network Models RCC, Feb 2012 2

Biological networks: protein-protein interaction networks

Social networks: friendship networks; co-authorship networks

We wish to have models that will be able to

• predict missing links,

• infer latent properties or classes of the objects,

• generalise learned properties from smaller observed networks to larger networks.

Figure from Barabasi and Oltvai 2004: A protein-protein interaction network of budding yeast



Latent Class Models

Latent Class Models

1

2

3
4

5

6

78

9

Latent class models assume each vertex has an (unknown) class

assignment. Classes: A, B, C and D.

CBL: Network Models RCC, Feb 2012 9

The basic idea is to posit that the structure of the network arises from latent (or
hidden) variables associated with each node.

We can think of latent class models as having a single discrete hidden variable
associated with each node.



Latent Class Models

Latent Class Models

1

2

3
4

5

6

78

9

Latent class models cluster the nodes. Each node is a member of

one cluster.

CBL: Network Models RCC, Feb 2012 11

This corresponds to a clustering of the nodes.
Such models can be used for community detection.

For example, the discrete hidden variables might correspond to the political views
of each individual in a social network.



Nonparametric Latent Class Models
Infinite Relational Model (Kemp et al 2006)

Latent Class Models
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Latent class models assume each vertex has an (unknown) class

assignment. Classes: A, B, C and D.

CBL: Network Models RCC, Feb 2012 9

Each node vi has a hidden class ci ∈ {1, . . . ,∞}

For all i: ci|c1, . . . , ci−1 ∼ CRP(α)

As before, probability of a link between two nodes vi and vj depends on their classes:

P (yij = 1|ci = k, cj = `) = ρk`

Note that ρ is an infinitely large matrix, but if we give each element a beta prior we
can integrate it out.

Inference done via MCMC. Fairly straightforward to implement.



Latent Feature ModelsLatent Feature Models
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latent feature models associate each vertex with K latent features

CBL: Network Models RCC, Feb 2012 30

• Each node posses some number of latent features.

• Alternatively we can think of this model as capturing overlapping clusters or
communities

• The link probability depends on the latent features of the two nodes.

• The model should be able to accommodate a potentially unbounded (infinite)
number of latent features.



Infinite Latent Attribute model for network data

i

j

ci  = 3 0 0 1 0 0 0 4 0 0 0 1 0 0 … 

cj  = 2 1 0 2 9 0 0 1 0 8 0 0 0 0 … 

• Each object has some number of latent attributes

• Each attribute can have some number of discrete values

• Probability of a link between object i and j depends on the attributes of i and j:

P (yij = 1|zi, zj,C,W) = σ
(∑

m

zimzjmw
(m)
cmi c

m
j

+ s
)

• Potentially unbounded number of attributes, and values per attribute2

• Generalises both the IRM and the NLFRM.

(w/ Konstantina Palla, David Knowles, ICML 2012)
2An IBP is used for the attribute matrix, Z and a CRP for the values of each attribute, C



Infinite Latent Attribute model for network data

i

j

ci  = 3 0 0 1 0 0 0 4 0 0 0 1 0 0 … 

cj  = 2 1 0 2 9 0 0 1 0 8 0 0 0 0 … 

Example: a student friendship network

• Each student might be involved in some activities or have some features:
person i has attributes (College, sport, politics)

person j has attributes (College, politics, religion, music)

• Each attribute has some values:
person i = (College=Trinity, sport=squash, politics=LibDem)

person j = (College=Kings, politics=LibDem, religion=Catholic, music=choir)

• Prob. of link between person i and j depends on their attributes and values.

• The attributes and values are not observed—they are learned from the network.



Infinite Latent Attribute: Results

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

An Infinite Latent Attribute Model for Network Data

Table 1. NIPS coauthorship network results. The best results are highlighted in bold where statistically significant.

IRM LFIRM ILA (M = 6) ILA (M = 1)
Train error 0.0427 ± 0.0009 0.0197 ± 0.0052 0.0086 ± 0.0005 0.0058 ± 0.0005
Test error 0.0440 ± 0.0014 0.0228 ± 0.0041 0.0141 ± 0.0012 0.0106 ± 0.0007
Test log likelihood �0.0859 ± 0.0043 �0.0547 ± 0.0079 �0.0322 ± 0.0058 �0.0318 ± 0.0094

Table 2. Gene interaction network results. The best results are highlighted in bold where statistically significant.

IRM LFIRM ILA (M = 6) ILA (M = 1)
Train error 0.3562 ± 0.0008 0.2603 ± 0.0098 0.2044 ± 0.0066 0.0248 ± 0.0010
Test error 0.3608 ± 0.0031 0.2661 ± 0.0086 0.2284 ± 0.0077 0.0735 ± 0.0047
Test log likelihood �0.4669 ± 0.0097 �0.4223 ± 0.0147 �0.3596 ± 0.0156 �0.2654 ± 0.0447

experiments applying VB to this model suggest that
successful breaking symmetry is surprisingly challeng-
ing.
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Exchangeable Arrays

Exchangeable arrays: An array X = (Xij)i,j∈N is called an exchangeable array if

(Xij)
d
= (Xπ(i)π(j)) for every π ∈ S∞.

Aldous-Hoover Theorem:
A random matrix (Xij) is exchangeable if and only if there is a random (measurable)

function F : [0, 1]3 → X such that (Xij)
d
= (F (Ui, Uj, Uij)) for every collection

(Ui)i∈N and (Uij)i≤j∈N of i.i.d. Uniform[0, 1] random variables, where Uji = Uij for
j < i ∈ N.

0
0

1
1

U1

U1

U2

U2

0

1

Pr{Xij = 1}

Θ

Interpretation:
Any model of matrices, arrays (or graphs) where the order of rows and columns
(nodes) is irrelevant can be expressed by assuming latent variables associated with
each row and column, and a random function mapping these latent variables to the
observations.



Random Function Model

We develop a nonparametric probabilistic model for arrays and graphs that makes
explicit the Aldous Hoover representation:

0
0

1
1

U1

U1

U2

U2

0

1

Pr{Xij = 1}

Θ

Θ ∼ GP(0, κ) (1)

U1, U2, . . .
iid∼ Uniform[0, 1] (2)

Wij = Θ(Ui, Uj) (3)

Xij ∼ P [·|Wij] (4)

(w/ James Lloyd, Dan Roy, Peter Orbanz, NIPS 2012)



Random Function Model

The random function model can be related to a number of existing models for
matrices, arrays/tensors, and graphs.

Random function priors for exchangeable arrays with
applications to graphs and relational data

James Robert Lloyd, Peter Orbanz, Zoubin Ghahramani, Daniel M. Roy

Structured relational data typically encoded in
the form of arrays. . .

A protein interactome. . . . . . encoded as an array

. . . which are often invariant to permutations of
rows and columns i.e. they are exchangeable
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When the labelling of nodes is arbitrary, the two adjacency matrices should be treated
equivalently.

Probability distributions for exchangeable arrays
can be characterised. . .

Definition 1.An array X = (Xij)i,j2N is called an exchangeable array if

(Xij)
d

= (X⇡(i)⇡(j)) for every ⇡ 2 S1 . (1)

Theorem 2 (Aldous, Hoover). A random 2-array (Xij) is exchangeable if and only
if there is a random (measurable) function F : [0, 1]3 ! X such that

(Xij)
d

= (F (Ui, Uj, Uij)). (2)

for every collection (Ui)i2N and (Uij)ij2N of i.i.d. Uniform[0, 1] random variables,
where Uji = Uij for j < i 2 N.

This was extended to d-arrays by Kallenberg: F is replaced by

F : [0, 1]2
d�1 �! X and (Xi1,...,id)

d= (F (UI1
, . . . , UI(2d�1)

)) . (3)

where I1, I2, . . . is every non-empty subset I ✓ {1, . . . , d}.

Another extension by Kallenberg shows that an arbitrarily good approx-
imation to any exchangeable array can be made with F of the form

F : [0, 1]d �! X and (Xi1,...,id)
d= (F (U1, . . . , Ud)) . (4)

. . . allowing for a simple Bayesian
nonparametric model

⇥ ⇠ GP(0, )

U1, U2, . . . ⇠iid Uniform[0, 1]

Xij |Wij ⇠ P [ . |Wij]

(5)

where Wij = ⇥(Ui, Uj).

Remark 3. The uniform distributions can be replaced with any non-atomic proba-
bility measure on a Borel space. For the purposes of inference, normal distributions
are more convenient.

Latent variables are interpretable

A protein interactome
Adjacency matrix sorted

by MAP embedding
MAP ⇥

Sorting the adjacency matrix of the protein interactome using the MAP values of the
Ui reveals interpretable structure in the data. The higher density of edges along the
diagonal reveals homophily. The block structure in the top left left reveals stochastic
equivalence. These features can also be seen in the MAP ⇥.

Representation allows for common perspective
on a variety of models

Graph data

Random function model ⇥ ⇠ GP (0, )
Latent class Wij = mUiUj

where Ui 2 {1, . . . , K}
IRM Wij = mUiUj

where Ui 2 {1, . . . ,1}
Latent distance Wij = �|Ui � Uj|
Eigenmodel Wij = U 0

i⇤Uj

LFRM Wij = U 0
i⇤Uj where Ui 2 {0, 1}1

ILA Wij =
P

d IUid
IUjd

⇤
(d)
UidUjd

where Ui 2 {0, . . . ,1}1
SMGB ⇥ ⇠ GP (0, 1 ⌦ 2)

Real-valued array data

Random function model ⇥ ⇠ GP (0, )
Mondrian process based ⇥ = piece-wise constant random function
PMF Wij = U 0

iVj

GPLVM ⇥ ⇠ GP (0, ⌦ �)

Flexibility of nonparametric model warranted by
empirical prediction study

AUC results

Data set High school NIPS Protein
Latent dimensions 1 2 3 1 2 3 1 2 3

PMF 0.747 0.792 0.792 0.729 0.789 0.820 0.787 0.810 0.841
Eigenmodel 0.742 0.806 0.806 0.789 0.818 0.845 0.805 0.866 0.882

GPLVM 0.744 0.775 0.782 0.888 0.876 0.883 0.877 0.883 0.873
RFM 0.815 0.827 0.820 0.907 0.914 0.919 0.903 0.910 0.912



Random Function Model: Results

Random function priors for exchangeable arrays with
applications to graphs and relational data

James Robert Lloyd, Peter Orbanz, Zoubin Ghahramani, Daniel M. Roy
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Covariance Matrices

Consider the problem of modelling a covariance matrix Σ that can change as a
function of time, Σ(t), or other input variables Σ(x). This is a widely studied
problem in Econometrics.

! !
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Models commonly used are multivariate GARCH, and multivariate stochastic
volatility models, but these only depend on t, and generally don’t scale well.



Generalised Wishart Processes for Covariance modelling

Modelling time- and spatially-varying covariance
matrices. Note that covariance matrices have to
be symmetric positive (semi-)definite.

If ui ∼ N , then Σ =
∑ν
i=1uiu

>
i is s.p.d. and has a Wishart distribution.

We are going to generalise Wishart distributions to be dependent on time or other
inputs, making a nonparametric Bayesian model based on Gaussian Processes (GPs).

So if ui(t) ∼ GP, then Σ(t) =
∑ν
i=1ui(t)ui(t)

> defines a Wishart process.

This is the simplest form, many generalisations are possible.
Also closely linked to Copula processes.

(w/ Andrew Wilson, NIPS 2010, UAI 2011)



Hierarchies

• true hierarchies

• parameter tying

• visualisation and interpretability
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Dirichlet Diffusion Trees (DDT)

(Neal, 2001)

In a DPM, parameters of one mixture component are independent of other
components – this lack of structure is potentially undesirable.

A DDT is a generalization of DPMs with hierarchical structure between components.

To generate from a DDT, we will consider data points x1, x2, . . . taking a random
walk according to a Brownian motion Gaussian diffusion process.

• x1(t) ∼ Gaussian diffusion process starting at origin (x1(0) = 0) for unit time.
• x2(t) also starts at the origin and follows x1 but diverges at some time τ , at

which point the path followed by x2 becomes independent of x1’s path.
• a(t) is a divergence or hazard function, e.g. a(t) = 1/(1− t). For small dt:

P (xi diverges at time τ ∈ (t, t+ dt)) =
a(t)dt

m

where m is the number of previous points that have followed this path.
• If xi reaches a branch point between two paths, it picks a branch in proportion

to the number of points that have followed that path.



Dirichlet Diffusion Trees (DDT)

Generating from a DDT:

Figure from (Neal 2001)



Pitman-Yor Diffusion Trees

Generalises a DDT, but at a branch point, the probability of following each branch
is given by a Pitman-Yor process:

P(following branch k) =
bk − α

m + θ
,

P(diverging) =
θ + αK

m + θ
,

to maintain exchangeability the probability of diverging also has to change.

• naturally extends DDTs (θ = α = 0) to arbitrary non-binary branching

• infinitely exchangeable over data

• prior over structure is the most general Markovian consistent and exchangeable
distribution over trees (McCullagh et al 2008)

(w/ Knowles UAI 2011)



Pitman-Yor Diffusion Tree: Results

Ntrain = 200,Ntest = 28,D = 10 Adams et al. (2008)

Figure: Density modeling of the D = 10,N = 200 macaque skull
measurement dataset of Adams et al. (2008). Top: Improvement in test
predictive likelihood compared to a kernel density estimate. Bottom:
Marginal likelihood of current tree. The shared x-axis is computation
time in seconds. �����
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Summary

• Probabilistic modelling and Bayesian inference are two sides of the same coin

• Bayesian machine learning treats learning as a probabilistic inference problem

• Bayesian methods work well when the models are flexible enough to capture
relevant properties of the data

• This motivates non-parametric Bayesian methods, e.g.:

– Gaussian processes for regression and classification
– Dirichlet process mixtures for clustering
– Indian buffet processes for sparse matrices and latent feature modelling
– Infinite latent attribute model for network modelling
– Aldous-Hoover random function model for exchangeable arrays
– Wishart processes for covariance modelling
– Pitman-Yor diffusion trees for hierarchical clustering



Open Challenge:
Bridging Bayesian and classical nonparametrics

• We need more classical theory (consistency, convergence rates, etc) for modern
Bayesian nonparametric models

• Some problems are easier to handle in one framework than in the other:

– Consider density estimation: Kernel density estimation is easy, Dirichlet process
mixture modelling is harder

– On the other hand, for complex modelling problems, Bayesian methods are
easier to compose, and naturally avoid the overfitting that can occur where
the number of parameters grows with the data.

• We should translate ideas from one framework to the other where possible

• We need more empirical and theoretical comparisons.
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