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Probabilistic Modelling

e A model describes data that one could observe from a system

e If we use the mathematics of probability theory to express all
forms of uncertainty and noise associated with our model...

e ...then inverse probability (i.e. Bayes rule) allows us to infer
unknown quantities, adapt our models, make predictions and
learn from data.



Bayesian Modelling

Everything follows from two simple rules:
Sum rule: P(x)=>_, P(x,y)
Product rule: P(x,y) = P(x)P(y|x)

P(D|0,m) likelihood of parameters 6 in model m
P0|D,m) = P(D|0, m)P(0]m) P(0|m) prior probability of 0
P(D|m) P(0|D, m) posterior of 6 given data D
Prediction:
P(z|D,m) = /P(:L']H,D, m)P(0|D,m)dd
Model Comparison:
P(Dlm)P(m)
P(m|D) =

P(Dlm) = / P(D0, m)P(6]m) o



Learning Model Structure

How many clusters in the data?

What is the intrinsic dimensionality of the data?

Variable selection: is some variable relevant to predicting another?

What is the order of a dynamical system?

How many states in a hidden Markov model?
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Bayesian Nonparametrics



Why...

e Why Bayesian?

Simplicity (of the framework)

e Why nonparametrics?

Complexity (of real world phenomena)



Parametric vs Nonparametric Models

Parametric models assume some finite set of parameters 6. Given the parameters,
future predictions, x, are independent of the observed data, D:

P(z|0,D) = P(x|0)
therefore 6 capture everything there is to know about the data.

So the complexity of the model is bounded even if the amount of data is
unbounded. This makes them not very flexible.

Non-parametric models assume that the data distribution cannot be defined in
terms of such a finite set of parameters. But it can often be defined by assuming
an infinite dimensional 6. Usually we think of 6 as a function.

The amount of information that # can capture about the data D can grow as
the amount of data grows. This makes them more flexible.




Why nonparametrics?

o flexibility

e better predictive performance

e more realistic

All successful methods in machine learning are essentially nonparametrid'}

e kernel methods / SVM / GP
e deep networks / large neural networks

e k-nearest neighbors, ...

Lor highly scalable!



Examples of non-parametric models

Parametric Non-parametric Application
polynomial regression Gaussian processes function approx.
logistic regression Gaussian process classifiers  classification
mixture models, k-means Dirichlet process mixtures clustering
hidden Markov models infinite HMMs time series

factor analysis / pPCA / PMF infinite latent factor models feature discovery




Gaussian and Dirichlet Processes

e Gaussian processes define a distribution on functions

where p is the mean function and K is the covariance function (kernel).
We can think of GPs as “infinite-dimensional”’ Gaussians

e Dirichlet processes define a distribution on distributions

G ~ DP(:|Gy, @)

where o > 0 is a scaling parameter, and G is the base measure.
We can think of DPs as “infinite-dimensional”’ Dirichlet distributions.

Note that both f and G are infinite dimensional objects.



Gaussian Processes and SVMs



Support Vector Machines and Gaussian Processes

£ 2

1
We can write the SVM loss as: min —f K 'f + CZ(I —yifi)+

1
We can write the negative log of a GP likelihood as: §fTK_1f — Zlnp(yi\fi) +c

Equivalent? No.

With Gaussian processes we:

Handle uncertainty in unknown function f by averaging, not minimization.
Compute p(y = +1|x) # p(y = +1|f, x).

Can learn the kernel parameters automatically from data, no matter how
flexible we wish to make the kernel.

Can learn the regularization parameter C without cross-validation.

Can incorporate interpretable noise models and priors over functions, and can
sample from prior to get intuitions about the model assumptions.

We can combine automatic feature selection with learning using ARD.

Easy to use Matlab code: http://www.gaussianprocess.org/gpml/code/
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Moving beyond GPs and DPs

Bayesian nonparametrics applied to models of other structured objects:

e Sparse Matrices

e Overlapping clusters
e Networks

e Exchangeable Arrays
e Covariances

e Hierarchies



Sparse binary matrices and the Indian buffet process

Znk = 1 means object n has feature k:

Znk ~ Bernoulli(6y)

0 ~ Beta(a/K,1)

Note that P(z,x = lla) = E(0;) = % so as K grows larger the matrix

gets sparser.
Soif Z is N x K, the expected number of nonzero entries is Na/(1+a/K) < Na.

Even in the K — oo limit, the matrix is expected to have a finite number of
non-zero entries.

K — o0 results in an Indian buffet process (IBP)



Nonparametric Binary Matrix Factorization

genes X patients
users X movies

(A)

Figure 5: Gene expression results. (A) The top-left is X sorted according to contiguous features in
the final U and V in the Markov chain. The bottom-left is V7 and the top-right is U. The bottom-

right is W. (B) The same as (A). but the expected value of X, X = UWV ™. We have hilighted
regions that have both u;; and v; on. For clarity, we have only shown the (at most) two largest
contiguous regions for each feature pair.

(B)

Meeds et al (2007) Modeling Dyadic Data with Binary Latent Factors.



The Big Picture:
Relations between some models

factorial ] factorial
model HMM
h 4

+ HMM

finite ]

mixture

IBP } ifHMM \
\ / \ / factorial
DPM } { iHMM } (

non-parami.

Factorial models allow data points to belong to multiple overlapping clusters
simultaneously, or equivalently have a factored state space.



Networks

[very brief, as | am speaking in the Social Network and Social Media Workshop this afternoon]



Modelling Networks

We are interested in modelling networks.

Biological networks: protein-protein interaction networks
Social networks: friendship networks; co-authorship networks

We wish to have models that will be able to

e predict missing links,
e infer latent properties or classes of the objects,

e generalise learned properties from smaller observed networks to larger networks.

Figure from Barabasi and Oltvai 2004: A protein-protein interaction network of budding yeast



Latent Class Models
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The basic idea is to posit that the structure of the network arises from latent (or
hidden) variables associated with each node.

We can think of latent class models as having a single discrete hidden variable
associated with each node.



Latent Class Models
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This corresponds to a clustering of the nodes.
Such models can be used for community detection.

For example, the discrete hidden variables might correspond to the political views
of each individual in a social network.



Nonparametric Latent Class Models
Infinite Relational Model (Kemp et al 2006)
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Each node v; has a hidden class ¢; € {1,...,00}

For all : Ci|01,...,07;_1 ~J CRP(O&)
As before, probability of a link between two nodes v; and v; depends on their classes:

P(yij = 1llci = k,c; =) = pre

Note that p is an infinitely large matrix, but if we give each element a beta prior we
can integrate it out.

Inference done via MCMC. Fairly straightforward to implement.



Latent Feature Models

Each node posses some number of latent features.

Alternatively we can think of this model as capturing overlapping clusters or
communities

The link probability depends on the latent features of the two nodes.

The model should be able to accommodate a potentially unbounded (infinite)
number of latent features.



Infinite Latent Attribute model for network data

¢;=30010004000100...

¢ =21029001080000...

Each object has some number of latent attributes
Each attribute can have some number of discrete values
Probability of a link between object ¢ and ;5 depends on the attributes of 7 and j:

P(yi; = 1|z;,2;,C,W) = O'(Z zimzjmwgnncg@ -+ s)

m

Potentially unbounded number of attributes, and values per attribute?]
Generalises both the IRM and the NLFRM.

(w/ Konstantina Palla, David Knowles, ICML 2012)

2An IBP is used for the attribute matrix, Z and a CRP for the values of each attribute, C



Infinite Latent Attribute model for network data

¢;=30010004000100...

¢ =21029001080000...

Example: a student friendship network

e Each student might be involved in some activities or have some features:
person_i has attributes (College, sport, politics)

person_j has attributes (College, politics, religion, music)

e Each attribute has some values:
person_i = (College=Trinity, sport=squash, politics=LibDem)

person_j = (College=Kings, politics=LibDem, religion=Catholic, music=choir)

e Prob. of link between person 7 and j depends on their attributes and values.

e The attributes and values are not observed—they are learned from the network.



Infinite Latent Attribute: Results

Table 1. NIPS coauthorship network results. The best results are highlighted in bold where statistically significant.

IRM LFIRM LA (M = 6) ILA (M = oo)
Train error 0.0427 £ 0.0009  0.0197 =+ 0.0052 0.0086 + 0.0005  0.0058 + 0.0005
Test error 0.0440 +0.0014  0.0228 & 0.0041 0.0141 +0.0012  0.0106 + 0.0007

Test log likelihood —0.0859 +£0.0043 —0.0547 +0.0079 —0.0322 + 0.0058 —0.0318 + 0.0094

Table 2. Gene interaction network results. The best results are highlighted in bold where statistically significant.

IRM LFIRM ILA (M = 6) ILA (M = oo)
Train error 0.3562 = 0.0008  0.2603 £ 0.0098  0.2044 + 0.0066  0.0248 + 0.0010
Test error 0.3608 +0.0031  0.2661+£0.0086  0.2284 +0.0077  0.0735 & 0.0047

Test log likelihood —0.4669 £ 0.0097 —0.4223 +£0.0147 —0.3596 £0.0156 —0.2654 4+ 0.0447

IRM: (Kemp et al 2006)
LFIRM: (Miller et al 2010)



Exchangeable Arrays

Exchangeable arrays: An array X = (X;,); jen is called an exchangeable array if

(X@j) i (Xﬂ(i)ﬂ(j)) for every m ¢ SOO.

Aldous-Hoover Theorem:

A random matrix (X;;) is exchangeable if and only if there is a random (measurable)

function F' : [0,1]> — X such that (X ) L (F(U;,U;,U;;)) for every collection

(Uz')iEN and (Uz'j)igjeN of i.i.d. Uniform[O, 1] random variables, where sz‘ = Uz'j for
j<iéeN.

0 — . T0
Uy -t-----%--1- ® Pr{X;; =1}

Up -p-d--mamm
S -

Interpretation:
Any model of matrices, arrays (or graphs) where the order of rows and columns

(nodes) is irrelevant can be expressed by assuming latent variables associated with
each row and column, and a random function mapping these latent variables to the

observations.




Random Function Model

We develop a nonparametric probabilistic model for arrays and graphs that makes
explicit the Aldous Hoover representation:

Uy Us
0 I I
0 . : - 0
Up -f-i----e22-9- i =1)
| l\\@/
U, "‘J:““'E'""
i i 1 -1 -

X

© ~ GP(0,k) (1)
Ui,Us,... ~ Uniforml0, 1] (2)
Wij = ©O(U;,Uj) (3)

(4)

i ~ Pl |Wiyl

(w/ James Lloyd, Dan Roy, Peter Orbanz, NIPS 2012)



Random Function Model

The random function model can be related to a number of existing models for
matrices, arrays/tensors, and graphs.

Graph data
Random function model © ~ GP(0,k)
Latent class Wij = myy whereU; € {1,..., K}
IRM Wij = myy, whereU; € {1,..., 00}
Latent distance Wi = —|U;—Uj
Eigenmodel Wi, = UAU;
LFRM Wi, = UAU; whereU; € {0,1}*
ILA I/VZ']' = Zd ]IUidHUjdAgilejd where U; € {O, cee OO}OO
SMGB © ~ QP (O,Ii1®/€2)

Real-valued array data

Random function model © ~ GP(0,k)

Mondrian process based © = piece-wise constant random function
PMF Wi, = UV,

GPLVM © ~ GP(0,k®9)




Random Function Model: Results

Data set
Latent dimensions

AUC results

High school
1 2 3

NIPS
1 2 3

Protein
1 2 3

PMF
Eigenmodel
GPLVM
RFM

0.747 0.792 0.792
0.742 0.806 0.806
0.744 0.775 0.782
0.815 0.827 0.820

0.729 0.789 0.820
0.789 0.818 0.845
0.888 0.876 0.883
0.907 0.914 0.919

0.787 0.810 0.841
0.805 0.866 0.882
0.877 0.883 0.873
0.903 0.910 0.912



Covariance Matrices

Consider the problem of modelling a covariance matrix > that can change as a
function of time, 3(t), or other input variables ¥(z). This is a widely studied

problem in Econometrics.

NASDAQ Returns
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Models commonly used are multivariate GARCH, and multivariate stochastic
volatility models, but these only depend on ¢, and generally don't scale well.



Generalised Wishart Processes for Covariance modelling

Modelling time- and spatially-varying covariance
matrices. Note that covariance matrices have to &
be symmetric positive (semi-)definite.

If u; ~ N, then ¥ =37 wu, is s.p.d. and has a Wishart distribution.

1

We are going to generalise Wishart distributions to be dependent on time or other
inputs, making a nonparametric Bayesian model based on Gaussian Processes (GPs).

So if u;(t) ~ GP, then X(¢t) = >0, u;(t)u;(t) ' defines a Wishart process.

This is the simplest form, many generalisations are possible.
Also closely linked to Copula processes.

(w/ Andrew Wilson, NIPS 2010, UAI 2011)



Hierarchies

Camel

Cow

Deer
Chimp
{ Gorilla
Horse
Giraffe
Elephant

Dog

Tiger

Squirrel
Wolf

. Dolphin
e parameter tying L e
Seal

Trout

e visualisation and interpretability penguin
Eagle

{ Roiin

{(ihickcn

Ostrich

e true hierarchies

Finch

Ant
{ Cockroach
Butterfly
Bee

Iguana

Rhino



Dirichlet Diffusion Trees (DDT)
(Neal, 2001)

In a DPM, parameters of one mixture component are independent of other
components — this lack of structure is potentially undesirable.

A DDT is a generalization of DPMs with hierarchical structure between components.

To generate from a DDT, we will consider data points x1, x5, ... taking a random
walk according to a Brownian motion Gaussian diffusion process.

e x1(t) ~ Gaussian diffusion process starting at origin (x1(0) = 0) for unit time.

e 15(t) also starts at the origin and follows x; but diverges at some time 7, at
which point the path followed by x5 becomes independent of x1's path.

e a(t) is a divergence or hazard function, e.g. a(t) =1/(1 —t). For small dt:

t)dt
P(z;diverges at timeT € (t,t + dt)) = &
m

where m is the number of previous points that have followed this path.
e If x; reaches a branch point between two paths, it picks a branch in proportion
to the number of points that have followed that path.



Generating from a DDT:
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Figure from (Neal 2001)




Pitman-Yor Diffusion Trees

Generalises a DDT, but at a branch point, the probability of following each branch
is given by a Pitman-Yor process:

. b, — «
P(foll branch k) =
(following branch k) o’
0+ aK
P(diverging) =
(diverging) mi0

to maintain exchangeability the probability of diverging also has to change.

e naturally extends DDTs (# = a = 0) to arbitrary non-binary branching

e infinitely exchangeable over data

e prior over structure is the most general Markovian consistent and exchangeable
distribution over trees (McCullagh et al 2008)

(w/ Knowles UAI 2011)



Pitman-Yor Diffusion Tree: Results

Nirain = 200, Niest = 28, D = 10 Adams et al. (2008)
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Figure: Density modeling of the D = 10, N = 200 macaque skull
measurement dataset of Adams et al. (2008). Top: Improvement in test
predictive likelihood compared to a kernel density estimate. Bottom:
Marginal likelihood of current tree. The shared x-axis is computation
time in seconds.
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Summary

Probabilistic modelling and Bayesian inference are two sides of the same coin
Bayesian machine learning treats learning as a probabilistic inference problem

Bayesian methods work well when the models are flexible enough to capture
relevant properties of the data

This motivates non-parametric Bayesian methods, e.g.:

— Gaussian processes for regression and classification

— Dirichlet process mixtures for clustering

— Indian buffet processes for sparse matrices and latent feature modelling
— Infinite latent attribute model for network modelling

— Aldous-Hoover random function model for exchangeable arrays

— Wishart processes for covariance modelling

— Pitman-Yor diffusion trees for hierarchical clustering



Open Challenge:
Bridging Bayesian and classical nonparametrics

We need more classical theory (consistency, convergence rates, etc) for modern
Bayesian nonparametric models

Some problems are easier to handle in one framework than in the other:

— Consider density estimation: Kernel density estimation is easy, Dirichlet process
mixture modelling is harder

— On the other hand, for complex modelling problems, Bayesian methods are
easier to compose, and naturally avoid the overfitting that can occur where
the number of parameters grows with the data.

We should translate ideas from one framework to the other where possible

We need more empirical and theoretical comparisons.



Thanks to
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