Machine Learning on Distributions

Barnabás Póczos

Carnegie Mellon University

Modern Nonparametric Methods in Machine Learning NIPS 2012 Workshop

Dec 7, 2012

Joint work with...

Jeff Schneider, CMU

Larry Wasserman, CMU

Liang Xiong, CMU Aarti Singh, CMU

Dougal Sutherland, CMU Alessandro Rinaldo, CMU

GOAL: Machine Learning on Distributions

Most machine learning algorithms operate on vectorial objects.

The world is **complicated.** Often

- hand crafted vectorial features are not good enough
- natural to work with complex inputs directly (sets or distributions...)

OUTLINE

1st Contribution Divergences	Nonparametric divergence estimation

2nd Contribution	classification, regression, clustering,
ML on distributions	anomaly detection, low-dim embedding,

3rd Contribution Applicationscomputer vision, astro-	nomy, turbulence data
---	-----------------------

4th Contribution Bound on prediction risk, rates
--

DIVERGENCE ESTIMATION

Examples: L_2 distance, L_1 distance, Kullback-Leibler divergence, f-divergence, maximum mean discrepancy, and many more...

Using
$$X_{1:n} = \{X_1, \dots, X_n\} \sim p \ Y_{1:m} = \{Y_1, \dots, Y_m\} \sim q$$

Estimate divergence $R_{\alpha}(p || q) \doteq \frac{1}{\alpha - 1} \log \int p^{\alpha} q^{1 - \alpha}$

without density estimation

 $\rho_k(i)$: the distance of the k-th nearest neighbor of X_i in $X_{1:n}$ $\nu_k(i)$: the distance of the k-th nearest neighbor of X_i in $Y_{1:m}$

$$\widehat{D}_{\alpha}(X_{1:n} \| Y_{1:m}) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{(n-1)\rho_{k}^{d}(i)}{m\nu_{k}^{d}(i)} \right)^{1-\alpha} \frac{\Gamma(k)^{2}}{\Gamma(k-\alpha+1)\Gamma(k+\alpha-1)}$$

 $\int p^{lpha}(x)q^{eta}(x) \mathrm{d}x$ can be estimated similarly.

Póczos & Schneider, AISTATS 2011

(A)

Does it make sense?

Theoretical results:

Asymptotically Unbiased

Póczos & Schneider, AISTATS 2011

A little problem...

Solutions: Asymptotic uniformly integrability... $\lim_{\beta \to \infty} \limsup_{n \to \infty} \int_{|u| \ge \beta} |u| f_n(u) du = 0 \text{ then } \lim_{n \to \infty} \mathbb{E} [\xi_n] = \mathbb{E} [\xi].$

> Be careful, mistakes are easy to make! Need: $\{\xi_n \rightarrow_d \xi\} \Rightarrow \{\mathbb{E}[\xi_n] \rightarrow \mathbb{E}[\xi]\}$ Strong law of large numbers [NIPS]

Be careful, some mistakes are easy to make...

We want:
$$\{F_n(u) \to F(u) \; \forall u\} \Rightarrow \left\{ \int_0^\infty u \, dF_n(u) \to \int_0^\infty u \, dF(u) \right\}$$

Helly–Bray theorem $\int_{\mathbb{R}} g(u) \, dF_n(u) \to \int_{\mathbb{R}} g(u) \, dF(u)$
for each bounded, continuous function $g : \mathbb{R} \to \mathbb{R}$

Enough: There exists an
$$\varepsilon > 0$$
 such that $\limsup_{n \to \infty} \mathbb{E} \left[\xi_n^{\gamma(1+\varepsilon)} \right] < \infty$.
Fatou lemma: $\limsup_{n \to \infty} \mathbb{E} \left[\xi_n^{\gamma(1+\varepsilon)} \right] \le \mathbb{E} \left[\limsup_{n \to \infty} \xi_n^{\gamma(1+\varepsilon)} \right] < \infty$
 $\gamma(1+\epsilon)$ moment of an Erlang variable $< \infty$
Fatou lemma: $\liminf_{n \to \infty} \mathbb{E} \left[\xi_n^{\gamma(1+\varepsilon)} \right] \ge \mathbb{E} \left[\liminf_{n \to \infty} \xi_n^{\gamma(1+\varepsilon)} \right]$

OUTLINE

Divergences Nonparametric divergence estimation	1st Contribution Divergences	Nonparametric divergence estimation	
--	---------------------------------	-------------------------------------	--

2nd Contribution	classification, regression, clustering,
ML on distributions	anomaly detection, low-dim embedding,

3rd Contribution Applications	computer vision, astronomy, turbulence data
----------------------------------	---

Theory T

Machine Learning on Distributions

Many ML algorithms only require

the pairwise distances between the inputs
the inner products between the inputs

If we can estimate divergences and inner products between distributions, then we can construct ML algorithms that operate on distributions.

□ Classification

Regression

□ Low-dimensional embedding

□ Anomaly detection

Distribution Classification

Goal: Classify the following distributions

Differences compared to standard methods on vectors

- The inputs are distributions (not vectors)
- □ We don't even know these distributions, only sample sets are available

Support Distribution Machine

We have T sample sets, $(\mathbf{X}_1, \dots, \mathbf{X}_T)$. [Training data] $\{X_{t,1}, \dots, X_{t,m_t}\} = \mathbf{X}_t \sim p_t$. \mathbf{X}_t has class $Y_t \in \{-1, +1\}$.

What is the class label Y of $\mathbf{X} = \{X_1, \dots, X_m\} \sim p$?

Solution: Use RKHS based SVM! \Rightarrow SDM

Calculate the Gram matrix $K_{ij} \doteq \langle \phi(p_i), \phi(p_j) \rangle_{\mathcal{K}} = K(p_i, p_j)$

$$\begin{aligned} &\widehat{\alpha} = \arg \max_{\substack{\alpha \in \mathbb{R}^T \\ T}} \sum_{i=1}^T \alpha_i - \frac{1}{2} \sum_{i,j}^T \alpha_i \alpha_j y_i y_j K_{ij}, & \text{subject to } \sum_i \alpha_i y_i = 0, \\ &Y = \text{sign}(\sum_{i=1}^T \widehat{\alpha}_i y_i K(p_i, p)) \in \{-1, +1\} & 0 \le \alpha_i \le C. \end{aligned}$$

Problems: We do not know p_i , p, $K(p_i, p_j)$, or $K(p_i, p)$...

Kernel Estimation

We can also try to use other $\mu(p,q)$ divergences, e.g. Rényi ... The $\{\widehat{K}_{i,j}\}_{ij}$ Gram matrix might not be PSD!

Solution: make it symmetric, and project it to the cone of PSD matrices

Other approaches: set kernels, MMD, Mean map kernel [Smola et al 2007], representer theorem on distributions, support measure machines [Muandet et al 2012],...

OUTLINE

1st Contribution Divergences	Nonparametric divergence estimation
Divergeneee	

2nd Contribution	classification, regression, clustering,
ML on distributions	anomaly detection, low-dim embedding,

3rd Contribution Applicationscomputer visit	on, astronomy, turbulence data
--	--------------------------------

|--|

Image Representation with Distributions

Dealing with complex objects

- break into smaller parts,
- □ represent the object as a sample set of these parts

Image patches •Overlapping •Non-overlapping

Patch locations

- Grid pointsInteresting pointsRandom
- Patch sizes •Same •Different, •Hierarchy

d-dimensional sample set representation of the image

 □ Each image *patch* is represented by PCA compressed SIFT vectors. *SIFT* = *Scale-invariant feature transform. PCA:* 128*dim* ⇒ *d dim* □ Each *image* is represented as a *set* of these *d* dim feature vectors.

□ Each *set* is considered as a sample set from some *unknown distribution*.

Detecting Anomalous Images

50 highway images

B. Póczos, L. Xiong & J. Schneider, UAI, 2011.

2-dimensional sample set representation of images (128 dim SIFT \Rightarrow 2 dim) **Anomaly score:** divergences between the distributions of these sample sets

Detecting Anomalous Images

51 52 53 54 55

GMM-5 Density Approximation Δ

Noisy USPS Dataset Classification

- □ Original (noiseless) USPS dataset is easy ~97%
- Each instance (image) is a set of 500 2d points
- □ 1000 training and 1000 test instances

Results:

SVM on raw images 82.1 ±.5% accuracy

SDM on the 2D distributions, Rényi divergence: 96.0 ±.3% accuracy

Multidimensional Scaling of USPS Data

10 instances from figures 1,2,3,4.Calculate pairwise Euclidean distances.Nonlinear embedding with MDS into 2d.

Raw **images** using Euclidean distance

Estimated Euclidean distance between the **distributions**

Local Linear Embedding of Distributions

72 rotated COIL froggies

Edge detected COIL froggy

Object Classification ETH-80 [Leibe and Schiele, 2003]

8 categories, 400 images, each image is represented by 576 18 dim points

Object Classification ETH-80 [Leibe and Schiele, 2003]

Classification accuracies on ETH-80 with Renyi- α s for twenty α s, as well as BoW.

Outdoor Scenes Classification [Oliva and Torralba, 2001]

Accuracies on the OT dataset; the horizontal line shows the best previously reported result

Sport Events Classification [Li and Fei Fei, 2007]

Computer Vision:

- **Goal**: best results
- □ Sophisticated feature construction, complex algorithms, heuristics

Distribution based approach:

- □ simple, easy to implement
- □ standard SIFT features
- □ 3 datasets, 3 best performances

(Zhang et al, CVPR 2011)

NPR: 87.18%

Póczos, Xiong, Sutherland, & Schneider, CVPR 2012 27

Finding Unusual Galaxy Clusters

What are the most anomalous galaxy clusters?

- The most anomalous galaxy cluster contains mostly
- □ star forming blue galaxies
- □ irregular galaxies

B. Póczos, L. Xiong & J. Schneider, UAI, 2011. Credits: ESA, NASA 28

Understanding Turbulences

More economical cars

Magnetic storms, solar winds Safer, faster airplanes

Ocean currents Credits: ESA, NASA, PPPL, Wikipedia

Fusion power plants: keep the plasma togerther

Turbulence Data Classification

Finding Vortices

Classification probabilities

Find Interesting Phenomena in Turbulence Data

Anomaly detection with 1-class SDM

Anomaly scores

OUTLINE

1st Contribution	Nonparametric divergence estimation
Divergences	romparametrie divergence estimation

2nd Contribution	classification, regression, clustering,
ML on distributions	anomaly detection, low-dim embedding,

3rd Contribution Applications	computer vision, astronomy, turbulence data
----------------------------------	---

Theory Bound on prediction risk, rates	4th Contribution Theory	Bound on prediction risk, rates
--	----------------------------	---------------------------------

So far, we got good experimental results in applications

Theory???

Distribution regression

Standard, finite dimensional regression Nadaraya-Watson, 1964

Υ

Model: $Y = f(X) + \mu$, $X \in \mathbb{R}^d$, $Y \in \mathbb{R}$ $\mathbb{E}[\mu] = 0$, X, μ are independent.

Training points:

 $(X_1, Y_1), (X_2, Y_2), \dots (X_m, Y_m)$ $X_i \sim P$, i.i.d., $Y_i \sim Q(\cdot | X_i)$, where $X_i \in \mathbb{R}^d$, $Y \in \mathbb{R}$

Test point: $x \in \mathbb{R}^d$

Goal: Estimate the $f(x) = \mathbb{E}[Y|X = x]$ function.

Kernel regression:

Consistency theorem of the estimator:

When $h_m \rightarrow 0$, $mh_m^d \rightarrow \infty$, + some other conditions

Distribution Regression Problem Definition

Model:

 (P_1, Y_1) , (P_2, Y_2) , ... (P_m, Y_m) , $P_i \sim \mathcal{P}$, $Y_i \sim Q(\cdot | P_i)$ i.i.d., where P_i is a distribution on $\mathcal{K} \subset \mathbb{R}^k$, $Y \in \mathbb{R}$

We do not observe P_i directly! We observe a sample from P_i .

$$\mathcal{X}_i = X_{i1}, \ldots, X_{in_i} \sim P_i$$

$$Y_i = f(P_i) + \mu_i \qquad \mathcal{X}_i \sim P_i \sim \mathcal{P}_i$$

Goal: Estimate $\mathbb{E}[Y|P]$ using the samples $\mathcal{X}, (\mathcal{X}_1, Y_1), \ldots, (\mathcal{X}_m, Y_m)$.

Difficulties Error in variables P_1, \ldots, P_m .

Dimension of a distribution is ∞ , but we need $h_m o 0$, $mh_m^d o \infty$

The kernel-kernel estimator

Regression function estimator

where $D(\mathcal{X}_i, \mathcal{X}_j) = D(\hat{P}_i, \hat{P}_j) = \int |\hat{p}_i(x) - \hat{p}_j(x)| dx.$

Kernel density estimator

 $\hat{p}_i(x) = \frac{1}{n_i} \sum_{j=1}^{n_i} \frac{1}{b_i^k} B\left(\frac{\|x - X_{ij}\|}{b_i}\right) \text{ with kernel } B \text{ and bandwidth } b_i$ $\|\cdot\| \text{ is the Euclidean distance, } k = dim(x)$

Goal: Bound $R(m, n_1, \ldots, n_m) = \mathbb{E}|\hat{f}(\hat{P}) - f(P)|.$

Assumptions

(A1) Hölder continuous functional.

$$f \in \left\{ f: |f(P_i) - f(P_j)| \le L D(P_i, P_j)^{\beta} \right\} \qquad L > 0 \text{ and } 0 < \beta \le 1$$

(A2) Asymmetric boxed and Lipschitz kernel.

 $\underline{K}I_{\{x\in\mathcal{B}(0,r)\}} \leq K(x) \leq \overline{K}I_{\{x\in\mathcal{B}(0,R)\}} \ \forall x > 0$

(A3) Lipschitz class of distributions P_i , P_i

(A4) Bounded regression.

 $\sup_{P \in \mathcal{P}} |f(P)| < f_{\max} < \infty$ $\mathbb{P}(|Y_i| \leq B_Y) = 1$ for some $B_Y < \infty$.

(A5) Lower bound on
$$\min_{1 \le i \le m+1} n_i$$

 $n = \min_{1 \le i \le m+1} n_i$. We assume that $e^{n^{\frac{k}{2+k}}}/m \to \infty$ as $m \to \infty$.

(A6) Relationship between *n* and *h*

Assume that $C_* n^{-\frac{1}{2+k}} \leq rh/4$ where C_* is a constant.

Bounding the risk

$$R(m,n) = \mathbb{E}\left[\left|\hat{f}(\hat{P};\hat{P}_1,\ldots,\hat{P}_m) - f(P)\right|\right]$$

Let $\mathcal{B}(P,h) = \{\tilde{P} \in \mathbb{D} : D(\tilde{P},P) \leq h\}.$

The L_1 ball of distributions around P with radius h.

Small ball probabilities

$$\Phi_P(h) \doteq \mathbb{P}(P_1 \in \mathcal{B}(P,h)|P)$$
 is a function of P.

Theorem

Suppose that the assumptions stated above hold. Let $b = n^{-\frac{1}{2+k}}$ be the bandwidth in the density estimators \hat{p}_i .

$$\begin{array}{|c|c|c|c|} \mathbb{P} & R(m,n) \leq & \frac{1}{h} \mathbb{E} \left[\frac{1}{\Phi_P(rh/2)} \right] C_1 n^{-\frac{1}{2+k}} + C_2 h^{\beta} + C_3 \sqrt{\frac{1}{m}} \sqrt{\mathbb{E} \left[\frac{1}{\Phi_P(rh/2)} \right]} \\ & + \frac{C_4}{m} \mathbb{E} \left[\frac{1}{\Phi_P(rh/2)} \right] + (m+1) e^{-\frac{1}{2}n^{\frac{k}{2+k}}}. \end{array}$$

 \bigcirc

Doubling Measure

Definition [Kpotufe, 2012]

 ${\cal P}$ is a doubling measure with effective dimension d if, for every $P,\ h>0,$ and $0<\epsilon<1,$

$$\frac{\phi_P(h)}{\phi_P(\epsilon h)} = \frac{\mathcal{P}(\mathcal{B}(P,h))}{\mathcal{P}(\mathcal{B}(P,\epsilon h))} \le \left(\frac{c}{\epsilon}\right)^d$$

Remark

If d denotes the doubling dimension of measure \mathcal{P} , then $\mathbb{E}\left[\frac{1}{\Phi_P(rh/2)}\right]$ can be upper bounded as follows:

$$\mathbb{E}\left[\frac{1}{\Phi_P(rh/2)}\right] = \mathbb{E}\left[\frac{\Phi_P(1)}{\Phi_P(rh/2)}\frac{1}{\Phi_P(1)}\right] \le C(rh/2)^{-d}\mathbb{E}\left[\frac{1}{\Phi_P(1)}\right] \le \frac{C}{h^d}$$

Theorem

$$R(m,n) \le \frac{C_1}{h^{d+1}n^{1/(k+2)}} + C_2 h^{\beta} + C_3 \sqrt{\frac{1}{mh^d}}$$

Examples for finite doubling dimension

Rates

$$R(m,n) \le \frac{C_1}{h^{d+1}n^{1/(k+2)}} + C_2 h^{\beta} + C_3 \sqrt{\frac{1}{mh^d}}$$

First case

$$\sqrt{\frac{1}{mh^d}} = \Omega\left(\frac{C_1}{h^{d+1}n^{1/(k+2)}}\right) \longrightarrow$$

$$R(m,n) = O\left(m^{-\beta/(2\beta+d)}\right)$$
$$h = \Theta\left(m^{-\frac{1}{2\beta+d}}\right) = \Omega\left(n^{-\frac{1}{(k+2)(\beta+d+1)}}\right) = \Omega\left(n^{-\frac{1}{k+2}}\right)$$
$$n = \Omega\left(m^{\frac{\beta+d+1}{2\beta+d}(k+2)}\right)$$

n is large compared to m

Second case

$$\sqrt{\frac{1}{mh^d}} = O\left(\frac{1}{h^{d+1}n^{1/(k+2)}}\right) \quad \Longrightarrow \quad$$

$$\begin{aligned} R(m,n) &= O\left(\frac{1}{h^{d+1}n^{1/(k+2)}} + h^{\beta}\right) \\ h &= \Theta\left(n^{-\frac{1}{(k+2)(\beta+d+1)}}\right) = \Omega\left(n^{-\frac{1}{k+2}}\right) \\ m &= \Omega\left(n^{\frac{2\beta+d}{(k+2)(\beta+d+1)}}\right) \end{aligned}$$
 m is large compared to n

Proofs

1st Step

$$R(m,n) = \mathbb{E}|\widehat{f}(\widehat{P};\widehat{P}_1,\ldots,\widehat{P}_m) - f(P)|$$

$$\leq \mathbb{E}|\widehat{f}(\widehat{P};\widehat{P}_1,\ldots,\widehat{P}_m) - \widehat{f}(P;P_1,\ldots,P_m)| + \mathbb{E}|\widehat{f}(P;P_1,\ldots,P_m) - f(P)|$$

2nd Step Finish the proof! ☺

Similar rates using knn regression when d>2. (...curse of low-dimensionality...)

Why small ball probabilities?

$$K_{i} = K\left(\frac{D(\hat{P}_{i}, \hat{P})}{h}\right)$$
$$\hat{f}(\hat{P}) = \hat{f}(\hat{P}; \hat{P}_{1}, \dots, \hat{P}_{m}) = \begin{cases} \frac{\sum_{i} Y_{i}K_{i}}{\sum_{i} K_{i}} & \text{if } \sum_{i} K_{i} > 0\\ 0 & \text{otherwise.} \end{cases}$$

Lemma

$$\mathbb{P}(\sum_{i=1}^{m} K_i = 0) \le \mathbb{P}(\sum_{i=1}^{m} K_i < \underline{K}) \le = \frac{1}{em} \mathbb{E}\left[\frac{1}{\Phi_P(rh)}\right]$$

Proof [based on Györfi et al, 2002]

$$\mathbb{P}\left(\sum_{i=1}^{m} K_{i} < \underline{\mathsf{K}}\right) \leq \mathbb{P}\left(\sum_{i=1}^{m} I_{\{D(P_{i}, P) \geq rh\}} = 0\right)$$
$$= \mathbb{E}[\mathbb{P}\left(\sum_{i=1}^{m} I_{\{D(P_{i}, P) \geq rh\}} = 0 | P\right)]$$
$$= \int \mathbb{P}\left(\sum_{i=1}^{m} I_{\{D(P_{i}, P) \geq rh\}} = 0 | P\right) d\mathcal{P}(P)$$
$$= \int \prod_{i=1}^{m} [1 - \mathcal{P}(P_{i} \in \mathcal{B}(P, rh) | P)] d\mathcal{P}(P)$$

Proof continued...

$$\begin{split} &= \int \prod_{i=1}^{m} [1 - \mathcal{P}(P_i \in \mathcal{B}(P, rh) | P)] d\mathcal{P}(P) \\ &= \int [1 - \mathcal{P}(P_1 \in \mathcal{B}(P, rh) | P)]^m d\mathcal{P}(P) \\ &\leq \int \exp[-m\mathcal{P}(P_1 \in \mathcal{B}(P, rh) | P)] d\mathcal{P}(P) \\ &= \int \exp[-m\mathcal{P}(P_1 \in \mathcal{B}(P, rh) | P)] \frac{m\mathcal{P}(P_1 \in \mathcal{B}(P, rh) | P)}{m\mathcal{P}(P_1 \in \mathcal{B}(P, rh) | P)} d\mathcal{P}(P) \\ &\leq \max_{u>0} u \exp(-u) \int \frac{d\mathcal{P}(P)}{m\mathcal{P}(P_1 \in \mathcal{B}(P, rh) | P)} \\ &\leq \frac{1}{e} \int \frac{d\mathcal{P}(P)}{m\mathcal{P}(P_1 \in \mathcal{B}(P, rh) | P)} \\ &= \frac{1}{em} \mathbb{E} \left[\frac{1}{\Phi_P(rh)} \right] \end{split}$$

Distribution Regression

Entropy of Gaussian

Take Me Home!

1st Contribution DivergencesNonparametric divergence estimation
--

