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Dealing with complex objects
� break into smaller parts, represent the input as a set of smaller parts

� treat the set elements as sample points from some unknown distribution

� do ML on these unknown distributions represented by sets

Most machine learning algorithms operate on vectorial objects.

The world is complicated. Often 
• hand crafted vectorial features are not good enough

• natural to work with complex inputs directly (sets or distributions...)

� Each galaxy can be represented by a feature vector

Classify galaxy clusters

� Each cluster can be represented by a set of these vectors 

� We can’t concatenate the feature vectors into a huge vector

GOAL:
Machine Learning on Distributions
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OUTLINE

classification, regression, clustering, 

anomaly detection, low-dim embedding, …
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ML on distributions

computer vision, astronomy, turbulence data
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Applications

Bound on prediction risk, rates
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Theory

1st Contribution
Divergences

Nonparametric divergence estimation
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Nonparametric divergence estimation



Using

Estimate divergence

DIVERGENCE ESTIMATION

without density estimation

5

Examples: L_2 distance, L_1 distance, Kullback-Leibler divergence, 

f-divergence, maximum mean discrepancy, and many more…



The Estimator

Póczos & Schneider, AISTATS 2011
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Theoretical results:

Does it make sense?
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� Asymptotically unbiased

� L2 consistent



Asymptotically Unbiased

We need to prove:

The estimator

Normalized k-NN distances converge to the Erlang distribution

Póczos & Schneider, AISTATS 2011

All we need is
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A little problem…

Asymptotic uniformly integrability…Solutions:

1 2 3

Be careful, mistakes are easy to make!

Strong law of large numbers [NIPS]

Need:
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Be careful, some mistakes are easy to 
make…

We want:

Helly–Bray theorem

Enough:

Fatou lemma:

Fatou lemma:
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Machine Learning on Distributions

If we can estimate divergences and inner products between 

distributions, then we can construct ML algorithms

that operate on distributions.

Many ML algorithms only require

� the pairwise distances between the inputs

� the inner products between the inputs

� Classification

� Regression

� Low-dimensional embedding

� Anomaly detection
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Distribution Classification 

?

+ -

+

+ -

-

Goal: Classify the following distributions

� The inputs are distributions (not vectors)

� We don’t even know these distributions, only sample sets are available

Differences compared to standard methods on vectors
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Training data

Test point



Support Distribution Machine

Problems:

Solution: Use RKHS based SVM! ⇒ SDM

Dual form of SVM:
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Calculate the Gram matrix



Kernel Estimation
Linear kernel:

Polynomial kernel:

Gaussian kernel:

Solution: make it symmetric, and project it to the cone of PSD matrices

15

We already know how!

Other approaches: set kernels, MMD, Mean map kernel [Smola et al 2007], 

representer theorem on distributions, support measure machines [Muandet et 

al 2012],…
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Image Representation with Distributions

� Each image patch is represented by PCA compressed SIFT vectors.

SIFT = Scale-invariant feature transform. PCA: 128dim⇒⇒⇒⇒ d dim 

Image patches
•Overlapping 
•Non-overlapping

Patch locations
•Grid points
•Interesting points
•Random

Patch sizes
•Same
•Different, 
•Hierarchy 

Dealing with complex objects

� break into smaller parts, 

� represent the object as a sample set of these parts

d-dimensional sample set representation of the image
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� Each set is considered as a sample set from some unknown distribution.

� Each image is represented as a set of these d dim feature vectors.



Detecting Anomalous Images
B. Póczos, L. Xiong & J. Schneider, UAI, 2011.

50 highway images

5 anomalies

2-dimensional sample set representation of images (128 dim SIFT ⇒⇒⇒⇒ 2 dim)

Anomaly score: divergences between the distributions of these sample sets
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Detecting Anomalous Images
1 2 3 4 95 86 7 10

55545351 52 19



2-dimensional sample set representation

GMM-5 Density Approximation
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1 2 3 4 95 86 7 10

55545351 52



Noisy USPS Dataset Classification

Results:

SVM on raw images 82.1 ± .5% accuracy

� Original (noiseless) USPS dataset is easy ~97%

SDM on the 2D distributions, Rényi divergence: 96.0 ± .3% accuracy
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160

160

� Each instance (image) is a set of 500 2d points

� 1000 training and 1000 test instances



Multidimensional Scaling of USPS Data

Raw images

using Euclidean distance
Estimated Euclidean distance

between the distributions

Nonlinear embedding with MDS into 2d.

10 instances from figures 1,2,3,4.
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Calculate pairwise Euclidean distances.



Local Linear Embedding of Distributions

72 rotated COIL froggies Edge detected COIL froggy

Euclidean distance between images Euclidean distance between distributions
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Object Classification
ETH-80 [Leibe and Schiele, 2003]

�BoW: 87.33%

�NPR: 89.93%  

8 categories, 400 images, each image is represented by 576 18 dim points

Póczos, Xiong, Sutherland, & Schneider, CVPR 2012
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2-fold CV,10 runs



Object Classification
ETH-80 [Leibe and Schiele, 2003]

Classification accuracies on ETH-80 with Renyi-αs for twenty αs, as well as BoW.
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Outdoor Scenes Classification
[Oliva and Torralba, 2001]

� Best published: 91.57%

(Qin and Yung, ICMV 

2010)

� NPR: 92.11%  

coast

mountain country

forest

street

highway city

tall building

8 categories, 2688 images, 

each represented by 1815 53 dim points.

Póczos, Xiong, Sutherland, & Schneider, CVPR 2012 26

10 fold CV, 10 runs

Accuracies on the OT dataset; the horizontal 

line shows the best previously reported result



8 categories, 1040 images, each represented by 295 to 1542 57 dim points.

Sport Events Classification
[Li and Fei Fei, 2007]

�Best published: 86.7%
(Zhang et al, CVPR 2011)

�NPR: 87.18%

Póczos, Xiong, Sutherland, & Schneider, CVPR 2012 2710 fold CV, 10 runs

badminton bocce croquet polo sailingclimbing rowing snowboard� 1040 images, each represented 

by 295-1542 53D points.

� 2 fold CV, 16 runs

Computer Vision: 

� Goal: best results

� Sophisticated feature construction, complex algorithms, heuristics 

Distribution based approach: 

� simple, easy to implement

� standard SIFT features

� 3 datasets, 3 best performances



B. Póczos, L. Xiong & J. Schneider, UAI, 2011.

What are the most anomalous galaxy clusters?

The most anomalous galaxy cluster contains mostly

� star forming blue galaxies

� irregular galaxies

Sloan Digital Sky Survey (SDSS)

� continuum spectrum⇒⇒⇒⇒ 2d 

�505 galaxy clusters  

(10-50 galaxies in each) 

�7530 galaxies

Finding Unusual Galaxy Clusters 

Blue galaxy Red galaxy

Credits: ESA, NASA  28



Understanding Turbulences

Credits: ESA, NASA, PPPL, Wikipedia 29

Ocean currents Fusion power plants: 

keep the plasma togerther

More economical cars Magnetic storms, solar winds Safer, faster airplanes



Turbulence Data Classification

Simulated fluid flow through time
(JHU Turbulence Research Group)

Positive (vortex) NegativeNegative

Velocity distributions
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•11 positive, 20 negative examples

find interesting events, patterns, phenomena

What is interesting?

Goal: find vortices!

Something interesting happened?

•Results: Leave one out cross-val : 97%



Finding Vortices

Classification probabilities
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Find Interesting Phenomena 
in Turbulence Data

Anomaly scores

Anomaly detection with 1-class SDM
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Bound on prediction risk, rates
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So far, we got good experimental 
results in applications

Theory???

Distribution regression
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Standard, finite dimensional regression 
Nadaraya-Watson, 1964

Training points:

Test point:

Kernel functions: K(x)

Data

Kernel regression:

Consistency theorem of the estimator:

⇒⇒⇒⇒ consistent

Goal:
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Model:



Distribution Regression 
Problem Definition

Difficulties

Goal:

Covariates
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Model:



The kernel-kernel estimator

Regression function estimator

Kernel density estimator

Goal:  Bound
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where



Assumptions

(A1) Hölder continuous functional.

(A2) Asymmetric boxed and Lipschitz kernel.

(A3) Lipschitz class of distributions

(A4) Bounded regression.

(A5) Lower bound on

(A6) Relationship between n and h
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Bounding the risk

Theorem
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Small ball probabilities

Suppose that the assumptions stated above hold.



Doubling Measure

Definition

Remark

Theorem
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[Kpotufe, 2012]



Examples for finite doubling dimension

Rotated 2D Gaussian distributions P1

P2
P3

Pm

1D Gaussian distributions; 
Changing mean and variance

Mean

va
ria

nce
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Rates

First case

Second case

n is large compared to m  

m is large compared to n  
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Proofs

2nd Step

Finish the proof! ☺
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1st Step

Similar rates using knn regression when d>2.

(…curse of low-dimensionality…) 



Why small ball probabilities?

Lemma

Proof [based on Györfi et al, 2002]
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Proof continued…
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Distribution Regression

Skewness of Beta Entropy of Gaussian
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classification, regression, clustering, 

anomaly detection, low-dim embedding, …

computer vision, astronomy, turbulence data
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Applications
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Nonparametric divergence estimation

Take Me Home!

Thanks for your attention! ☺
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