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Modern Data

e Across modern applications {images, signals, networks}

» many”many variables in system than available observations

gene expression

profiles social networks

fMRI images



High-dimensional Data

e Curse of dimensionality

» required observations/experience increase exponentially with variables in
system

* |s there a way out?

» Yes! If there is some intrinsic “structure” :: parameter lies in any of a
collection of low-dimensional subspaces (Negahban, Ravikumar,
Wainwright, Yu, 2009, 2012)



—xamples of Structure Subspaces

Example 1. Sparse vectors. Consider the set of s-sparse vectors in p dimensions. For any particular
subset S C {1,2,...,p} with cardinality s, we define the model subspace

AS):={aeRP | a; =0 forallj¢S}

Example 2. Group-structured norms. In many applications, sparsity arises in a more structured
fashion, with groups of coefficients likely to be zero (or non-zero) simultaneously. Suppose that
{1,2,...,p} can be partitioned into a set of T" disjoint groups, say G = {G1,Go,...,Gr}. Given any
subset Sg C {1,...,T} of group indices, say with cardinality sg = |Sg|, we can define the subspace

A(Sg) ={a€eR’ | ag, =0 forallt¢ Sg}.

Example 3. Low-rank matrices. Consider the class of matrices © € RP**P2 that have rank r» < min{py, p2}.
For any given matrix O, we let row(0) C RP? and col(©) C RP! denote its row space and column

space respectively. For a given pair (U, V') of r-dimensional subspaces U C RP* and V' C RP2, we

can define the subspaces A(U, V') of RP1*P2 given by

AU, V) :={© e RP"*P2 | row(0) C V, col(©) C U}.

Negahban, Ravikumar, VWainwrignt, Yu, 2009, 20172
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{Discrete, Gaussian} Graphical Models, ...



High-dimensional Data

e Curse of dimensionality
» required observations/experience increase exponentially with variables in system
¢ |s there a way out?

» Yes! If there is some intrinsic “structure” :: parameter lies in any of a collection of
low-dimensional subspaces (Negahban, Ravikumar, Wainwright, Yu, 2009, 2012)

» Such structure is typically focused on parametric models: e.g. sparse {Linear,
Generalized Linear} Models, low-rank matrix-structured models, edge-sparse
{Discrete, Gaussian} Graphical Models, ...

» Non-parametric models: “Infinite” dimensional parameter-space, do not want to
directly impose low-dimensional structure!



Semi-parametric Models

e ook at semi-parametric models with {parametric + non-parametric}
components, and impose low-dimensional structure on the parametric
component



—xample: Additive Models

e General non-parametric regression model:

Y :f(Xl, . ,XpZ—knoise
output

signal

p
e Additive Models: Y = Z fi(X;)+€ (Hastie and Tioshirani, 90)

j=1

» Sum of univariate functions of individual co-ordinates



—xample: Additive Models

e General non-parametric regression model:

Y :f(Xl, . ,XpZ—knoise
output

signal

p
e Additive Models: Y = Z fi(X;)+€ (Hastie and Tioshirani, 90)
j=1
» Sum of univariate functions of individual co-ordinates

» Rewriteas Y = Z§:1 a; g;(X;) +e€ with ||lg;||=1,7=1,...,p

» Can impose low-dimensional structure on alpha



—xample: Sparse Additive Models

p
* Additive Models: Y = " f;(X;)+e  (Haslie and Toshirani, 90)

g=1

» Rewriteas Y =) 7| a; g;(X;) +¢ with |lg;[| =1, =1,...,p

» Impose sparsity on alpha ==> Sparse Additive Models (Ravikumar, Lafferty,
Liu, Wasserman O7, Lin and Zhang 06, Meir, Van de Geer, Buhlimann 09, Raskutt],
Wainwright, Yu 10, ..

» Other structured-sparse extensions (Liu et al. 2010, ...)

+ Group-sparse additive models, structured-sparse additive models, ...



Semi-parametric story only goes so far



Sparse Models

Y X 0* w
S
n — +
SC
Set-up: noisy observations y = X6* 4+ w with sparse 6*

Estimator: Lasso program
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Some past work: Tibshirani, 1996; Chen et al., 1998; Donoho/Xuo, 2001; Tropp, 2004;
Fuchs, 2004; Meinshausen/Buhlmann, 2005; Candes/Tao, 2005; Donoho, 2005; Haupt &
Nowak, 2006; Zhao/Yu, 2006; Wainwright, 2006; Zou, 2006; Koltchinskii, 2007;
Meinshausen/Yu, 2007; Tsybakov et al., 2008




Sparse Nonparametric Models

Sparse Additive Models can be rewritten as a
semi-parametric model as noted before



Sparse Nonparametric Models

Y = f(X1,...,X,) +e
{7 € [p]: f(:) depends on X,| < p

LU, Lafterty, VWasserman 0o Bertin, Lecue O8

Not easily rewritten as a semi-parametric model



Block-sparse Models

@*

Y X |44
n = + n
p
m m
Block-sparse structure:’ features (rows) shared across tasks
(columns)

Group LASSO (Obozinski et al: Negahioan et al: Huang et 4l
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| ow-rank Models

VT

U D

Set-up: Matrix ©* € R**™ with rank r < min{k, m}.

Estimator:
R 1 min{k,m}
] R PR . 2 .
O € argménn;@z (X3, ©)) + An 2; 7,;(0)

Some past work: Frieze et al., 1998; Achilioptas & McSherry, 2001; Srebro et al., 2004;
Drineas et al., 2005; Rudelson & Vershynin, 2006; Recht et al., 2007; Bach, 2008; Meka et
al., 2009; Candes & Tao, 2009; Keshavan et al., 2009




Nonparametric Low-Rank Models

e Not even obvious what the corresponding structure in the non/semi-
parametric case would be

e Foygel et al. 2012:

nI = [ miX) [m2(X)| ... ka()+In




Nonparametric Low-Rank Models

e Not even obvious what the corresponding structure in the non/semi-
parametric case would be

e Foygel et al. 2012:

Y %%
n I = miX) [ma00| ... | me() |+ I n
m m

Cov(m(X)) has low rank



> A unified story for non-parametric structure (akin
to Negahban et al., 2009, 2012 for parametric
structure) is still outstanding

> More than imposing parametric structure on a
semi-parametric model



Multiple Index Model

Response Y as a function of the dependent variables X:

Y =) g;(6]X) +e
j=1



Multiple Index Model

Response Y as a function of the dependent variables X:

Y = Zgj(ﬁfX) + €,

j=1 \

“Index” :: a uni-dimensional summary of data



Multiple Index Model

Response Y as a function of the dependent variables X:

Y =) g;(6]X)+e

g=1 \

“‘component”
Also called a ridge function

- g;(8; X)is constant where 8] X is constant
- Its function surface looks like a ridge



Multiple Index Model

Response Y as a function of the dependent variables X:

Y =) g;(6]X) +e
j=1

e Task: Given n samples (X", Y"), recover the functions {g;}j~,
and the weights {8;}7-;

» Can impose {sparsity, other low-dimensional structure}
on scales of g_j (like in sparse additive models), as also on \beta_|]



Multiple Index Model

Response Y as a function of the dependent variables X:

Y =) g;(6]X) +e
j=1

e Task: Given n samples (X", Y"), recover the functions {g;}j~,
and the weights {8;}7-;

» Can impose {sparsity, other low-dimensional structure}
on scales of g_j (like in sparse additive models), as also on \beta_|]

» For now, consider vanilla multiple index models



Occurrences in the wild

Response Y as a function of the dependent variables X:

Y =) g;(6]X) +e
j=1

e Neural networks: functions g; set to sigmoids

e Modeling Distributions over images: product (instead of sum) of such
functions (Hinton, 99; Roth, Black, 0&; VWeling, Hinton, Osindero, 02)



Application: Neural Coding

e Neural Coding: how neurons process and encode information

e Typical models use linear filters on the visual stimulus

» easy to fit to data, computationally tractable, fits observed responses of
neurons in “early” sensory areas

e But non-linear sub-units play a key role

» Experiments demonstrating presence of non-linear units in visual cortex
date to 76 and earlier (-Hochstein, Shapely 76)

» Even canonical “simple” cells have non-linearities (Fust et al. 05, Touryan et al. 05)



Application: Responses in early visual cortex (V1)

Used sparse additive models to encode voxels in early visual cortex

—Ncoding. Ravikumear et al. 2009
Decoding: Vu etal, 2010
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Application: Retinal Modeling

e Cone cells, feed into bipolar cells, which feed into Retinal Ganglion Cells

Cones

Retinal Ganglion Cells

e |t is possible to record Retinal Ganglion Cells in response to visual stimuli, but
difficult to record from, and consequently infer the statistical behavior of bi-
polar cells



Multiple Index Models

Cones

Retinal Ganglion Cells

Y — Zgj (QTX) + ¢, Tothe Rescue!
j=1



Index Models and Projections

e \When data is high-dimensional, then for {visualization, modeling}, a classical technique
IS based on

» (a) projecting data into lower dimensional space, and
(b) working with projected data

e Salient Question: How to pick the projection directions?
» Friedman: Visualization; inspect 2D projections
» Huber: Interestingness
+ PCA, ICA, methods by Kruskal, Switzer and Wright, ...

+ Friedman, Tukey 74: max. product of density and std-dev of projected data



On Index Models and Projections

e Multiple Index Models: Additive Models on Projected Data
p
e Additive Models: Y = Z fi(X;)+e (Hastie and Tibshirani, 90)
j=1
» Sum of univariate functions of individual co-ordinates
e Multiple Index Models:
» Indices formed by projections {Z; = 8; X}

» Additive Model over indices: Y =Y g;(Z;)
J

= Zgj(ﬁ}rX)



Projection Pursuit Regression

e Candidate Criterion for picking “interesting” projection directions in multiple
index model

» Minimize squared error
e Projection Pursuit Regression (Friedman and stuetzie, 817)

» Minimize squared error greedily



Backfitting

e Additive Models typically inferred using “backfitting”

» Cycle through coordinates, and fit univariate function in that co-ordinate to
the residual

» Can extend back-fitting to multiple-index models



Multiple Index Model Backfitting

min — Z Y(’) Zgj ﬁTX(Z

{BjERll | ygj €g} 2n i—1

Algorithm Least-Squares Multiple-Index Backfitting

Initialize: 8, =0,9; =055 =1,...,m
for outer iterations ¢ = 1, 2, ... until convergence do
fork=1,...,mdo

Compute the residuals R,(f) =Y — D itk gj(ﬁfXj@); i=1,...,n
Solve for (gx, Bk ) by estimating a sparse single-index model with R as output and X, as input.

end for
end for




Multiple Index Model Backfitting

min — Z Y(’) Zgj ﬁTX(Z

{BjERll | ygj €g} 2n i—1

Algorithm Least-Squares Multiple-Index Backfitting

Initialize: 8, =0,9; =055 =1,...,m
for outer iterations ¢ = 1, 2, ... until convergence do
fork=1,...,mdo

Compute the residuals R,(f) =Y — D itk gj(ﬁfXj@); i=1,...,n
Solve for (gx, Bk ) by estimating a sparse single-index model with R as output and X, as input.

end for
end for

—stimating a SIM model is key!



Candidate Method for SIM Estimation

Y = g(BTX0) +e

Algorithm Solving a single-index model

Initialize: 8 =0, g = 0.
for outer iterations ¢ = 1, 2, . .. until convergence do
Fixing g, obtain 3 by solving:

1 <& . .
in<— Y (YO —g(pTx@0)2%
f € arg min {Qn ;Zlﬁ( g(6" X))

Fixing /3, obtain g by solving
1 <& . .
g € argmin { > (v® - g(BTX(Z)))2} .

geG | 2n “
=1

end for




Step Il in SIM estimation: Fitting the Proj. Weights

e Consider loss, as a function of beta, fixing g
L(B) =E(Y — g(8" X))

e 1D Example
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Single Index Model Loss

e Consider loss, as a function of beta, fixing g
L(B) =E(Y — g(8" X))

e 1D Example
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Single Index Model Loss

e Consider loss, as a function of beta, fixing g
L(B) =E(Y — g(8" X))

e 2D Example
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Single Index Model Loss

e Consider loss, as a function of beta, fixing g
L(B) =E(Y — ¢g(8T X))?

e 2D Example
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A surrogate loss

e The squared error loss E(Y — ¢(8* X))? is a notion of divergence
between Y and g(S81 X)

e Are there are other loss functions, that

» (a) arise as measuring divergence between Y and g(8! X), but are also

» (b) convex in beta

¢ Yes!



Bregman Divergence

e Given a strictly convex function f, the induced Bregman divergence:

De(p'[|v) = f(u)—flw)—(Vf), u —v)

® Fuclidean Distance ::

With f(u) = u?, D;(p/||v) = |p' — V|3




Surrogate Bregman Loss

e Squared Error Loss, as a function of beta, fixing g
L(B) =E(Y - g(8" X))’

e Let G(v) = [_ g(t)dt, and F(u) =supv’u—G(v),

vER

e Proposition:

Dp(Y || g(87X) = G(BTX) — BTX Y + F(Y)

IS convex in beta, when g iIs monotonic.



SIM

—stimation using Surrogate

Sregman Loss

Algorithm Solving a single-index model: Bregman Updates

Initialize: 8 =0, g = 0.
for outer iterations ¢ = 1, 2, ... until convergence do
Fixing g, obtain 3 by solving:

. 1 i i i
B e arg min { Z (G(BTX( ) —y@(pT x( )))}

2n 4
1=1

ERp

Fixing (3, obtain g by solving

end for

g € arg min {21 Z(Y(i) — g(BTX(i)))2} :

geg n “




Application: Retinal Modeling

e Simulations of {cones, bi-polar cells, retinal ganglion cells}
from Chichilnisky Lab

» Corresponding to 48015 visual (white noise) stimuli:

» Simulated responses of 134 cones, subsets of which provide input to 20
bipolar cells that feed into a single retinal ganglion cell.

» Code allows us to fix the nonlinearity in bipolar cell outputs

+ We use exponential, sigmoidal, rectifying (hinge) functions



Parameter and Prediction

Error
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Function Recovery:

—Xponential
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Function Recovery: Sigmoidal
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Function Recovery:

Rectifying
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Summary

e Multiple Index Models provide a natural semi-parametric framework in many
settings: in neural coding in particular

e Their use till now has been limited due to problems with inference given non-
convex objectives

¢ \We provide a surrogate loss that is convex in the projection weights

e Modern non-parametrics needs to marry recent advances in convex/
variational optimization and structural constraints to classical non-
parametrics



Thank You!



