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Modern Data

• Across modern applications {images, signals, networks}

‣ many^many variables in system than available observations

fMRI images gene expression 
profiles social networks



High-dimensional Data

• Curse of dimensionality 

‣ required observations/experience increase exponentially with variables in 
system

• Is there a way out?

‣ Yes! If there is some intrinsic “structure” :: parameter lies in any of a 
collection of low-dimensional subspaces (Negahban, Ravikumar, 
Wainwright, Yu, 2009, 2012)



Examples of Structure Subspaces

Example 1. Sparse vectors. Consider the set of s-sparse vectors in p dimensions. For any particular
subset S ⊆ {1, 2, . . . , p} with cardinality s, we define the model subspace

A(S) :=
{
α ∈ R

p | αj = 0 for all j /∈ S}.

Example 2. Group-structured norms. In many applications, sparsity arises in a more structured
fashion, with groups of coefficients likely to be zero (or non-zero) simultaneously. Suppose that
{1, 2, . . . , p} can be partitioned into a set of T disjoint groups, say G = {G1, G2, . . . , GT }. Given any
subset SG ⊆ {1, . . . , T} of group indices, say with cardinality sG = |SG|, we can define the subspace

A(SG) :=
{
α ∈ R

p | αGt = 0 for all t /∈ SG
}
.

Example 3. Low-rank matrices. Consider the class of matrices Θ ∈ Rp1×p2 that have rank r ≤ min{p1, p2}.
For any given matrix Θ, we let row(Θ) ⊆ Rp2 and col(Θ) ⊆ Rp1 denote its row space and column
space respectively. For a given pair (U, V ) of r-dimensional subspaces U ⊆ Rp1 and V ⊆ Rp2, we
can define the subspaces A(U, V ) of Rp1×p2 given by

A(U, V ) :=
{
Θ ∈ R

p1×p2 | row(Θ) ⊆ V, col(Θ) ⊆ U
}
.
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• Curse of dimensionality 

‣ required observations/experience increase exponentially with variables in system

• Is there a way out?

‣ Yes! If there is some intrinsic “structure” :: parameter lies in any of a collection of 
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‣ Such structure is typically focused on parametric models: e.g. sparse {Linear, 
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{Discrete, Gaussian} Graphical Models, ...



High-dimensional Data

• Curse of dimensionality 

‣ required observations/experience increase exponentially with variables in system

• Is there a way out?

‣ Yes! If there is some intrinsic “structure” :: parameter lies in any of a collection of 
low-dimensional subspaces (Negahban, Ravikumar, Wainwright, Yu, 2009, 2012)

‣ Such structure is typically focused on parametric models: e.g. sparse {Linear, 
Generalized Linear} Models, low-rank matrix-structured models, edge-sparse 
{Discrete, Gaussian} Graphical Models, ...

‣ Non-parametric models: “Infinite” dimensional parameter-space, do not want to 
directly impose low-dimensional structure!



Semi-parametric Models

• Look at semi-parametric models with {parametric + non-parametric} 
components, and impose low-dimensional structure on the parametric 
component



Example: Additive Models

• General non-parametric regression model:

• Additive Models:                                      (Hastie and Tibshirani, 90)

‣ Sum of univariate functions of individual co-ordinates

Y⇤⇥�⌅
output

= f(X1, . . . , Xp)⇤ ⇥� ⌅
signal

+noise

Y =
pX

j=1

fj(Xj) + ✏



Example: Additive Models

• General non-parametric regression model:

• Additive Models:                                      (Hastie and Tibshirani, 90)

‣ Sum of univariate functions of individual co-ordinates

‣ Rewrite as 

‣ Can impose low-dimensional structure on alpha

Y⇤⇥�⌅
output

= f(X1, . . . , Xp)⇤ ⇥� ⌅
signal

+noise

Y =
pX

j=1

fj(Xj) + ✏

Y =
Pp

j=1 ↵j gj(Xj) + ✏, with kgjk = 1, j = 1, . . . , p



Example: Sparse Additive Models

• Additive Models:                                      (Hastie and Tibshirani, 90)

‣ Rewrite as 

‣ Impose sparsity on alpha ==> Sparse Additive Models (Ravikumar, Lafferty, 
Liu, Wasserman 07, Lin and Zhang 06, Meir, Van de Geer, Buhlmann 09, Raskutti, 
Wainwright, Yu 10, ...)

‣ Other structured-sparse extensions (Liu et al. 2010, ...)

✦ Group-sparse additive models, structured-sparse additive models, ...

Y =
pX

j=1

fj(Xj) + ✏

Y =
Pp

j=1 ↵j gj(Xj) + ✏, with kgjk = 1, j = 1, . . . , p



Semi-parametric story only goes so far



Sparse Models

Example: Sparse regression

= +n
S

wy X θ∗

Sc

n× p

Set-up: noisy observations y = Xθ∗ + w with sparse θ∗

Estimator: Lasso program

θ̂ ∈ argmin
θ

1

n

n∑

i=1

(yi − xT
i θ)

2 + λn

p∑

j=1

|θj |

Some past work: Tibshirani, 1996; Chen et al., 1998; Donoho/Xuo, 2001; Tropp, 2004;

Fuchs, 2004; Meinshausen/Buhlmann, 2005; Candes/Tao, 2005; Donoho, 2005; Haupt &

Nowak, 2006; Zhao/Yu, 2006; Wainwright, 2006; Zou, 2006; Koltchinskii, 2007;

Meinshausen/Yu, 2007; Tsybakov et al., 2008



Sparse Nonparametric Models

Y =
pX

j=1

fj(Xj) + ✏,

|{j 2 [p] : fj 6⌘ 0}| ⌧ p

Sparse Additive Models can be rewritten as a 
semi-parametric model as noted before



Sparse Nonparametric Models

Not easily rewritten as a semi-parametric model

Liu, Lafferty, Wasserman 06; Bertin, Lecue 08

Y = f(X1, . . . , Xp) + ✏,

|{j 2 [p] : f(·) depends on Xj | ⌧ p



Block-sparse Models

Multivariate regression with block regularizers

= +

PSfrag replacements

XY WΘ∗

S

Sc

n n

m

m

m

p
n × p

!1/!q-regularized group Lasso: with λn ≥ 2|||XT W
n

|||∞,q̃ where 1/q + 1/q̃ = 1

bΘ ∈ arg min
Θ∈Rp×p

˘ 1
2n

|||Y − XΘ|||2F + λn|||Θ|||1,q

¯
.

Corollary

Say Θ∗ is supported on |S| = s rows, X satisfies RSC and Wij ∼ N(0,σ2).

Then we have |||Θ̂ − Θ∗|||F ≤ 2
γ(L)Ψq(S)λn where

Ψq(S) =

{
m1/q−1/2 √s if q ∈ [1, 2).
√

s if q ≥ 2.

Block-sparse structure: features (rows) shared across tasks 
(columns)
Group LASSO (Obozinski et al; Negahban et al; Huang et al)

                                       



Low-rank Models

Example: Low-rank matrix approximation

=

Θ∗ U D V T

r × r

k ×m k × r

r ×m

Set-up: Matrix Θ∗ ∈ Rk×m with rank r # min{k,m}.

Estimator:

Θ̂ ∈ argmin
Θ

1

n

n∑

i=1

(yi − 〈〈Xi, Θ〉〉)2 + λn

min{k,m}∑

j=1

σj(Θ)

Some past work: Frieze et al., 1998; Achilioptas & McSherry, 2001; Srebro et al., 2004;

Drineas et al., 2005; Rudelson & Vershynin, 2006; Recht et al., 2007; Bach, 2008; Meka et

al., 2009; Candes & Tao, 2009; Keshavan et al., 2009



Nonparametric Low-Rank Models

• Not even obvious what the corresponding structure in the non/semi-
parametric case would be

• Foygel et al. 2012: Multivariate regression with block regularizers
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˘ 1
2n
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¯
.

Corollary

Say Θ∗ is supported on |S| = s rows, X satisfies RSC and Wij ∼ N(0,σ2).

Then we have |||Θ̂ − Θ∗|||F ≤ 2
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{
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s if q ≥ 2.

m1(X) m2(X) mk(X)...



Nonparametric Low-Rank Models

• Not even obvious what the corresponding structure in the non/semi-
parametric case would be

• Foygel et al. 2012: Multivariate regression with block regularizers

= +

PSfrag replacements

XY WΘ∗
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p
n × p

!1/!q-regularized group Lasso: with λn ≥ 2|||XT W
n

|||∞,q̃ where 1/q + 1/q̃ = 1

bΘ ∈ arg min
Θ∈Rp×p

˘ 1
2n

|||Y − XΘ|||2F + λn|||Θ|||1,q

¯
.

Corollary

Say Θ∗ is supported on |S| = s rows, X satisfies RSC and Wij ∼ N(0,σ2).

Then we have |||Θ̂ − Θ∗|||F ≤ 2
γ(L)Ψq(S)λn where

Ψq(S) =

{
m1/q−1/2 √s if q ∈ [1, 2).
√

s if q ≥ 2.

m1(X) m2(X) mk(X)...

Cov(m(X)) has low rank



> A unified story for non-parametric structure (akin 
to Negahban et al., 2009, 2012 for parametric 
structure) is still outstanding

> More than imposing parametric structure on a 
semi-parametric model



Multiple Index Model
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Here we describe a statistical modeling framework and a class of novel estimation methods that are well-suited to
the problem of identifying nonlinear subunit structure behind the responses of a recorded neuron. In particular, we
propose to use multiple index models that model the response as an additive combination of functional transformations
of linear projections of the features. This approach has a long history that we detail in the introduction, but its usage
has lagged in part because estimating these require solving non-convex optimization problems, so that empirical
performance typically suffers. Here however, we show that when the functional components have a specific form,
we can estimate these models using a convex surrogate method. As we show, its performance is substantially better
than that of previous estimation methods: indeed with this methodology, multiple index models are feasible again as
high-dimensional nonlinear modeling tools.

We demonstrate the applicability of these methods using simulated data from primate retina. The spiking activity
of retinal ganglion cells can be measured in vitro using extracellular recording techniques [18], and recent work has
shown that it is possible to identify the specific cones that provide input to each retinal ganglion cell [6]. Given this
data, the primary piece of missing information is the transformation carried out by the group of bipolar cells that
convey sensory information from cones to retinal ganglion cells. Bipolar cells produce analog responses that induce a
rectifying nonlinear transformation of their inputs [5]. This makes their effects identifiable and motivates the use of a
multiple index model for the responses of retinal ganglion cells.

2 Multiple Index Models

A multiple-index regression model [10] is a semiparametric regression model where the response or output variable
Y 2 R depends on the covariates or input variables X 2 Rp as

Y =

mX

j=1

g

j

(�

T

j

X) + ✏, (1)

where ✏ is additive zero mean noise, independent of X . The functions {g
j

}m
j=1 are assumed to belong to some given

class of functions G, for instance the set of differentiable functions, or monotonically increasing functions. The linear
projections �T

k

X provide unidimensional summaries of the covariates, and each of these is called an index (hence the
name multiple-index model). Another term typically used for these components is that of a ridge function, since the
function g(�

x

) is constant over the hyperplane �

x

= c (so that its function surface looks like a ridge). Given n i.i.d.
samples S = {(Xi

, Y

(i)
), i = 1, ..., n} from the model (1), the model-estimation task comprises estimating both a

parametric component {�
j

}m
j=1 as well as the nonparametric components or functions {g

j

}m
j=1.

Estimation in this model does not suffer from the curse of dimensionality intrinsic to general non-parametric estima-
tion. Such index models have thus been used in many machine learning applications, for instance as product of a
collection of single index functions when g is specified [11, 21, 28].

2.1 A Brief History

When the data is very high-dimensional, it becomes quite difficult not only to visualize the data but also to estimate
any nonparametric function over the data such as a regression function. A popular approach has thus been to reduce the
dimensionality of the data by finding directions to project the data onto. Techniques to pick such projection directions
have a long history, including methods like PCA, ICA and methods by Kruskal [16], Switzer and Wright [25] and
others. Huber [14] provide a nice survey and perspective on such methods: the methods all pick interesting directions
by minimizing specific functions on the projected data. For instance, projection pursuit by Friedman and Tukey [8],
estimates the projection directions by maximizing a function over the projected data consisting of the product of a
density functional and of a robust variant of the standard deviation of the projected data. Huber [14] discuss different
classes of measures of interestingness, and note that many of these reduce to inferring “non-Gaussian” directions so
that the projected data looks least normal. Friedman [7] also emphasized the perspective of visualization, and allowing
the user to pick interesting directions by inspecting 2D projections of the data.

Friedman and Stuetzle [9] then applied this perspective to the task of regression, and proposed estimating the multiple
index regression model in (1) via a stagewise procedure as follows that they termed projection pursuit regression: Sup-
pose at stage m, they have fit m�1 indices {g

j

(�

T

j

X)}m�1
j=1 so that they have the residual r

m

= y�
P

m�1
j=1 g

j

(�

T

j

X).
They then first estimate a nonparametric fit g

m

of the residual r
m

to some projection �

T

X for some unit vector

2

Response Y as a function of the dependent variables X:



Multiple Index Model
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Here we describe a statistical modeling framework and a class of novel estimation methods that are well-suited to
the problem of identifying nonlinear subunit structure behind the responses of a recorded neuron. In particular, we
propose to use multiple index models that model the response as an additive combination of functional transformations
of linear projections of the features. This approach has a long history that we detail in the introduction, but its usage
has lagged in part because estimating these require solving non-convex optimization problems, so that empirical
performance typically suffers. Here however, we show that when the functional components have a specific form,
we can estimate these models using a convex surrogate method. As we show, its performance is substantially better
than that of previous estimation methods: indeed with this methodology, multiple index models are feasible again as
high-dimensional nonlinear modeling tools.

We demonstrate the applicability of these methods using simulated data from primate retina. The spiking activity
of retinal ganglion cells can be measured in vitro using extracellular recording techniques [18], and recent work has
shown that it is possible to identify the specific cones that provide input to each retinal ganglion cell [6]. Given this
data, the primary piece of missing information is the transformation carried out by the group of bipolar cells that
convey sensory information from cones to retinal ganglion cells. Bipolar cells produce analog responses that induce a
rectifying nonlinear transformation of their inputs [5]. This makes their effects identifiable and motivates the use of a
multiple index model for the responses of retinal ganglion cells.

2 Multiple Index Models

A multiple-index regression model [10] is a semiparametric regression model where the response or output variable
Y 2 R depends on the covariates or input variables X 2 Rp as

Y =

mX

j=1

g

j

(�

T

j

X) + ✏, (1)

where ✏ is additive zero mean noise, independent of X . The functions {g
j

}m
j=1 are assumed to belong to some given

class of functions G, for instance the set of differentiable functions, or monotonically increasing functions. The linear
projections �T

k

X provide unidimensional summaries of the covariates, and each of these is called an index (hence the
name multiple-index model). Another term typically used for these components is that of a ridge function, since the
function g(�

x

) is constant over the hyperplane �

x

= c (so that its function surface looks like a ridge). Given n i.i.d.
samples S = {(Xi

, Y

(i)
), i = 1, ..., n} from the model (1), the model-estimation task comprises estimating both a

parametric component {�
j

}m
j=1 as well as the nonparametric components or functions {g

j

}m
j=1.

Estimation in this model does not suffer from the curse of dimensionality intrinsic to general non-parametric estima-
tion. Such index models have thus been used in many machine learning applications, for instance as product of a
collection of single index functions when g is specified [11, 21, 28].

2.1 A Brief History

When the data is very high-dimensional, it becomes quite difficult not only to visualize the data but also to estimate
any nonparametric function over the data such as a regression function. A popular approach has thus been to reduce the
dimensionality of the data by finding directions to project the data onto. Techniques to pick such projection directions
have a long history, including methods like PCA, ICA and methods by Kruskal [16], Switzer and Wright [25] and
others. Huber [14] provide a nice survey and perspective on such methods: the methods all pick interesting directions
by minimizing specific functions on the projected data. For instance, projection pursuit by Friedman and Tukey [8],
estimates the projection directions by maximizing a function over the projected data consisting of the product of a
density functional and of a robust variant of the standard deviation of the projected data. Huber [14] discuss different
classes of measures of interestingness, and note that many of these reduce to inferring “non-Gaussian” directions so
that the projected data looks least normal. Friedman [7] also emphasized the perspective of visualization, and allowing
the user to pick interesting directions by inspecting 2D projections of the data.

Friedman and Stuetzle [9] then applied this perspective to the task of regression, and proposed estimating the multiple
index regression model in (1) via a stagewise procedure as follows that they termed projection pursuit regression: Sup-
pose at stage m, they have fit m�1 indices {g

j

(�

T

j

X)}m�1
j=1 so that they have the residual r

m

= y�
P

m�1
j=1 g

j

(�

T

j

X).
They then first estimate a nonparametric fit g

m

of the residual r
m

to some projection �

T

X for some unit vector

2

Response Y as a function of the dependent variables X:

“Index” :: a uni-dimensional summary of data



Multiple Index Model
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Here we describe a statistical modeling framework and a class of novel estimation methods that are well-suited to
the problem of identifying nonlinear subunit structure behind the responses of a recorded neuron. In particular, we
propose to use multiple index models that model the response as an additive combination of functional transformations
of linear projections of the features. This approach has a long history that we detail in the introduction, but its usage
has lagged in part because estimating these require solving non-convex optimization problems, so that empirical
performance typically suffers. Here however, we show that when the functional components have a specific form,
we can estimate these models using a convex surrogate method. As we show, its performance is substantially better
than that of previous estimation methods: indeed with this methodology, multiple index models are feasible again as
high-dimensional nonlinear modeling tools.

We demonstrate the applicability of these methods using simulated data from primate retina. The spiking activity
of retinal ganglion cells can be measured in vitro using extracellular recording techniques [18], and recent work has
shown that it is possible to identify the specific cones that provide input to each retinal ganglion cell [6]. Given this
data, the primary piece of missing information is the transformation carried out by the group of bipolar cells that
convey sensory information from cones to retinal ganglion cells. Bipolar cells produce analog responses that induce a
rectifying nonlinear transformation of their inputs [5]. This makes their effects identifiable and motivates the use of a
multiple index model for the responses of retinal ganglion cells.

2 Multiple Index Models

A multiple-index regression model [10] is a semiparametric regression model where the response or output variable
Y 2 R depends on the covariates or input variables X 2 Rp as

Y =

mX

j=1

g

j

(�

T

j

X) + ✏, (1)

where ✏ is additive zero mean noise, independent of X . The functions {g
j

}m
j=1 are assumed to belong to some given

class of functions G, for instance the set of differentiable functions, or monotonically increasing functions. The linear
projections �T

k

X provide unidimensional summaries of the covariates, and each of these is called an index (hence the
name multiple-index model). Another term typically used for these components is that of a ridge function, since the
function g(�

x

) is constant over the hyperplane �

x

= c (so that its function surface looks like a ridge). Given n i.i.d.
samples S = {(Xi

, Y

(i)
), i = 1, ..., n} from the model (1), the model-estimation task comprises estimating both a

parametric component {�
j

}m
j=1 as well as the nonparametric components or functions {g

j

}m
j=1.

Estimation in this model does not suffer from the curse of dimensionality intrinsic to general non-parametric estima-
tion. Such index models have thus been used in many machine learning applications, for instance as product of a
collection of single index functions when g is specified [11, 21, 28].

2.1 A Brief History

When the data is very high-dimensional, it becomes quite difficult not only to visualize the data but also to estimate
any nonparametric function over the data such as a regression function. A popular approach has thus been to reduce the
dimensionality of the data by finding directions to project the data onto. Techniques to pick such projection directions
have a long history, including methods like PCA, ICA and methods by Kruskal [16], Switzer and Wright [25] and
others. Huber [14] provide a nice survey and perspective on such methods: the methods all pick interesting directions
by minimizing specific functions on the projected data. For instance, projection pursuit by Friedman and Tukey [8],
estimates the projection directions by maximizing a function over the projected data consisting of the product of a
density functional and of a robust variant of the standard deviation of the projected data. Huber [14] discuss different
classes of measures of interestingness, and note that many of these reduce to inferring “non-Gaussian” directions so
that the projected data looks least normal. Friedman [7] also emphasized the perspective of visualization, and allowing
the user to pick interesting directions by inspecting 2D projections of the data.

Friedman and Stuetzle [9] then applied this perspective to the task of regression, and proposed estimating the multiple
index regression model in (1) via a stagewise procedure as follows that they termed projection pursuit regression: Sup-
pose at stage m, they have fit m�1 indices {g

j

(�

T

j

X)}m�1
j=1 so that they have the residual r

m

= y�
P

m�1
j=1 g

j

(�

T

j

X).
They then first estimate a nonparametric fit g

m

of the residual r
m

to some projection �

T

X for some unit vector

2

Response Y as a function of the dependent variables X:

“component”

Also called a ridge function

-                is constant where          is constant 
- Its function surface looks like a ridge 
gj(�

T
j X) �T

j X



Multiple Index Model

• Task: Given n samples             , recover the functions         
and the weights 

‣ Can impose {sparsity, other low-dimensional structure} 
on scales of g_j (like in sparse additive models), as also on \beta_j
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Here we describe a statistical modeling framework and a class of novel estimation methods that are well-suited to
the problem of identifying nonlinear subunit structure behind the responses of a recorded neuron. In particular, we
propose to use multiple index models that model the response as an additive combination of functional transformations
of linear projections of the features. This approach has a long history that we detail in the introduction, but its usage
has lagged in part because estimating these require solving non-convex optimization problems, so that empirical
performance typically suffers. Here however, we show that when the functional components have a specific form,
we can estimate these models using a convex surrogate method. As we show, its performance is substantially better
than that of previous estimation methods: indeed with this methodology, multiple index models are feasible again as
high-dimensional nonlinear modeling tools.

We demonstrate the applicability of these methods using simulated data from primate retina. The spiking activity
of retinal ganglion cells can be measured in vitro using extracellular recording techniques [18], and recent work has
shown that it is possible to identify the specific cones that provide input to each retinal ganglion cell [6]. Given this
data, the primary piece of missing information is the transformation carried out by the group of bipolar cells that
convey sensory information from cones to retinal ganglion cells. Bipolar cells produce analog responses that induce a
rectifying nonlinear transformation of their inputs [5]. This makes their effects identifiable and motivates the use of a
multiple index model for the responses of retinal ganglion cells.

2 Multiple Index Models

A multiple-index regression model [10] is a semiparametric regression model where the response or output variable
Y 2 R depends on the covariates or input variables X 2 Rp as

Y =

mX

j=1

g

j

(�

T

j

X) + ✏, (1)

where ✏ is additive zero mean noise, independent of X . The functions {g
j

}m
j=1 are assumed to belong to some given

class of functions G, for instance the set of differentiable functions, or monotonically increasing functions. The linear
projections �T

k

X provide unidimensional summaries of the covariates, and each of these is called an index (hence the
name multiple-index model). Another term typically used for these components is that of a ridge function, since the
function g(�

x

) is constant over the hyperplane �

x

= c (so that its function surface looks like a ridge). Given n i.i.d.
samples S = {(Xi

, Y

(i)
), i = 1, ..., n} from the model (1), the model-estimation task comprises estimating both a

parametric component {�
j

}m
j=1 as well as the nonparametric components or functions {g

j

}m
j=1.

Estimation in this model does not suffer from the curse of dimensionality intrinsic to general non-parametric estima-
tion. Such index models have thus been used in many machine learning applications, for instance as product of a
collection of single index functions when g is specified [11, 21, 28].

2.1 A Brief History

When the data is very high-dimensional, it becomes quite difficult not only to visualize the data but also to estimate
any nonparametric function over the data such as a regression function. A popular approach has thus been to reduce the
dimensionality of the data by finding directions to project the data onto. Techniques to pick such projection directions
have a long history, including methods like PCA, ICA and methods by Kruskal [16], Switzer and Wright [25] and
others. Huber [14] provide a nice survey and perspective on such methods: the methods all pick interesting directions
by minimizing specific functions on the projected data. For instance, projection pursuit by Friedman and Tukey [8],
estimates the projection directions by maximizing a function over the projected data consisting of the product of a
density functional and of a robust variant of the standard deviation of the projected data. Huber [14] discuss different
classes of measures of interestingness, and note that many of these reduce to inferring “non-Gaussian” directions so
that the projected data looks least normal. Friedman [7] also emphasized the perspective of visualization, and allowing
the user to pick interesting directions by inspecting 2D projections of the data.

Friedman and Stuetzle [9] then applied this perspective to the task of regression, and proposed estimating the multiple
index regression model in (1) via a stagewise procedure as follows that they termed projection pursuit regression: Sup-
pose at stage m, they have fit m�1 indices {g

j
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X)}m�1
j=1 so that they have the residual r

m

= y�
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X).
They then first estimate a nonparametric fit g
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of the residual r
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to some projection �
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Response Y as a function of the dependent variables X:
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Multiple Index Model

• Task: Given n samples             , recover the functions         
and the weights 

‣ Can impose {sparsity, other low-dimensional structure} 
on scales of g_j (like in sparse additive models), as also on \beta_j

‣ For now, consider vanilla multiple index models
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Here we describe a statistical modeling framework and a class of novel estimation methods that are well-suited to
the problem of identifying nonlinear subunit structure behind the responses of a recorded neuron. In particular, we
propose to use multiple index models that model the response as an additive combination of functional transformations
of linear projections of the features. This approach has a long history that we detail in the introduction, but its usage
has lagged in part because estimating these require solving non-convex optimization problems, so that empirical
performance typically suffers. Here however, we show that when the functional components have a specific form,
we can estimate these models using a convex surrogate method. As we show, its performance is substantially better
than that of previous estimation methods: indeed with this methodology, multiple index models are feasible again as
high-dimensional nonlinear modeling tools.

We demonstrate the applicability of these methods using simulated data from primate retina. The spiking activity
of retinal ganglion cells can be measured in vitro using extracellular recording techniques [18], and recent work has
shown that it is possible to identify the specific cones that provide input to each retinal ganglion cell [6]. Given this
data, the primary piece of missing information is the transformation carried out by the group of bipolar cells that
convey sensory information from cones to retinal ganglion cells. Bipolar cells produce analog responses that induce a
rectifying nonlinear transformation of their inputs [5]. This makes their effects identifiable and motivates the use of a
multiple index model for the responses of retinal ganglion cells.

2 Multiple Index Models

A multiple-index regression model [10] is a semiparametric regression model where the response or output variable
Y 2 R depends on the covariates or input variables X 2 Rp as

Y =

mX

j=1

g

j

(�

T

j

X) + ✏, (1)

where ✏ is additive zero mean noise, independent of X . The functions {g
j

}m
j=1 are assumed to belong to some given

class of functions G, for instance the set of differentiable functions, or monotonically increasing functions. The linear
projections �T

k

X provide unidimensional summaries of the covariates, and each of these is called an index (hence the
name multiple-index model). Another term typically used for these components is that of a ridge function, since the
function g(�

x

) is constant over the hyperplane �

x

= c (so that its function surface looks like a ridge). Given n i.i.d.
samples S = {(Xi

, Y

(i)
), i = 1, ..., n} from the model (1), the model-estimation task comprises estimating both a

parametric component {�
j

}m
j=1 as well as the nonparametric components or functions {g

j

}m
j=1.

Estimation in this model does not suffer from the curse of dimensionality intrinsic to general non-parametric estima-
tion. Such index models have thus been used in many machine learning applications, for instance as product of a
collection of single index functions when g is specified [11, 21, 28].

2.1 A Brief History

When the data is very high-dimensional, it becomes quite difficult not only to visualize the data but also to estimate
any nonparametric function over the data such as a regression function. A popular approach has thus been to reduce the
dimensionality of the data by finding directions to project the data onto. Techniques to pick such projection directions
have a long history, including methods like PCA, ICA and methods by Kruskal [16], Switzer and Wright [25] and
others. Huber [14] provide a nice survey and perspective on such methods: the methods all pick interesting directions
by minimizing specific functions on the projected data. For instance, projection pursuit by Friedman and Tukey [8],
estimates the projection directions by maximizing a function over the projected data consisting of the product of a
density functional and of a robust variant of the standard deviation of the projected data. Huber [14] discuss different
classes of measures of interestingness, and note that many of these reduce to inferring “non-Gaussian” directions so
that the projected data looks least normal. Friedman [7] also emphasized the perspective of visualization, and allowing
the user to pick interesting directions by inspecting 2D projections of the data.

Friedman and Stuetzle [9] then applied this perspective to the task of regression, and proposed estimating the multiple
index regression model in (1) via a stagewise procedure as follows that they termed projection pursuit regression: Sup-
pose at stage m, they have fit m�1 indices {g

j

(�

T

j

X)}m�1
j=1 so that they have the residual r
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They then first estimate a nonparametric fit g
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to some projection �
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X for some unit vector
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Response Y as a function of the dependent variables X:

(Xi, Y i)
{�j}mj=1

{gj}mj=1



Occurrences in the wild

• Neural networks: functions gj set to sigmoids

• Modeling Distributions over images: product (instead of sum) of such 
functions (Hinton, 99; Roth, Black, 05; Welling, Hinton, Osindero, 02)
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Here we describe a statistical modeling framework and a class of novel estimation methods that are well-suited to
the problem of identifying nonlinear subunit structure behind the responses of a recorded neuron. In particular, we
propose to use multiple index models that model the response as an additive combination of functional transformations
of linear projections of the features. This approach has a long history that we detail in the introduction, but its usage
has lagged in part because estimating these require solving non-convex optimization problems, so that empirical
performance typically suffers. Here however, we show that when the functional components have a specific form,
we can estimate these models using a convex surrogate method. As we show, its performance is substantially better
than that of previous estimation methods: indeed with this methodology, multiple index models are feasible again as
high-dimensional nonlinear modeling tools.

We demonstrate the applicability of these methods using simulated data from primate retina. The spiking activity
of retinal ganglion cells can be measured in vitro using extracellular recording techniques [18], and recent work has
shown that it is possible to identify the specific cones that provide input to each retinal ganglion cell [6]. Given this
data, the primary piece of missing information is the transformation carried out by the group of bipolar cells that
convey sensory information from cones to retinal ganglion cells. Bipolar cells produce analog responses that induce a
rectifying nonlinear transformation of their inputs [5]. This makes their effects identifiable and motivates the use of a
multiple index model for the responses of retinal ganglion cells.

2 Multiple Index Models

A multiple-index regression model [10] is a semiparametric regression model where the response or output variable
Y 2 R depends on the covariates or input variables X 2 Rp as

Y =

mX

j=1

g

j

(�

T

j

X) + ✏, (1)

where ✏ is additive zero mean noise, independent of X . The functions {g
j

}m
j=1 are assumed to belong to some given

class of functions G, for instance the set of differentiable functions, or monotonically increasing functions. The linear
projections �T

k

X provide unidimensional summaries of the covariates, and each of these is called an index (hence the
name multiple-index model). Another term typically used for these components is that of a ridge function, since the
function g(�

x

) is constant over the hyperplane �

x

= c (so that its function surface looks like a ridge). Given n i.i.d.
samples S = {(Xi

, Y

(i)
), i = 1, ..., n} from the model (1), the model-estimation task comprises estimating both a

parametric component {�
j

}m
j=1 as well as the nonparametric components or functions {g

j

}m
j=1.

Estimation in this model does not suffer from the curse of dimensionality intrinsic to general non-parametric estima-
tion. Such index models have thus been used in many machine learning applications, for instance as product of a
collection of single index functions when g is specified [11, 21, 28].

2.1 A Brief History

When the data is very high-dimensional, it becomes quite difficult not only to visualize the data but also to estimate
any nonparametric function over the data such as a regression function. A popular approach has thus been to reduce the
dimensionality of the data by finding directions to project the data onto. Techniques to pick such projection directions
have a long history, including methods like PCA, ICA and methods by Kruskal [16], Switzer and Wright [25] and
others. Huber [14] provide a nice survey and perspective on such methods: the methods all pick interesting directions
by minimizing specific functions on the projected data. For instance, projection pursuit by Friedman and Tukey [8],
estimates the projection directions by maximizing a function over the projected data consisting of the product of a
density functional and of a robust variant of the standard deviation of the projected data. Huber [14] discuss different
classes of measures of interestingness, and note that many of these reduce to inferring “non-Gaussian” directions so
that the projected data looks least normal. Friedman [7] also emphasized the perspective of visualization, and allowing
the user to pick interesting directions by inspecting 2D projections of the data.

Friedman and Stuetzle [9] then applied this perspective to the task of regression, and proposed estimating the multiple
index regression model in (1) via a stagewise procedure as follows that they termed projection pursuit regression: Sup-
pose at stage m, they have fit m�1 indices {g
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X)}m�1
j=1 so that they have the residual r
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They then first estimate a nonparametric fit g
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of the residual r
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X for some unit vector
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Response Y as a function of the dependent variables X:



Application: Neural Coding

• Neural Coding: how neurons process and encode information

• Typical models use linear filters on the visual stimulus

‣ easy to fit to data, computationally tractable, fits observed responses of 
neurons in “early” sensory areas

• But non-linear sub-units play a key role

‣ Experiments demonstrating presence of non-linear units in visual cortex 
date to ’76 and earlier (Hochstein, Shapely 76)

‣ Even canonical “simple” cells have non-linearities (Rust et al. 05, Touryan et al. 05)



Application: Responses in early visual cortex (V1)
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Used sparse additive models to encode voxels in early visual cortex



Application: Retinal Modeling

• Cone cells, feed into bipolar cells, which feed into Retinal Ganglion Cells

• It is possible to record Retinal Ganglion Cells in response to visual stimuli, but 
difficult to record from, and consequently infer the statistical behavior of bi-
polar cells
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Multiple Index Models
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Here we describe a statistical modeling framework and a class of novel estimation methods that are well-suited to
the problem of identifying nonlinear subunit structure behind the responses of a recorded neuron. In particular, we
propose to use multiple index models that model the response as an additive combination of functional transformations
of linear projections of the features. This approach has a long history that we detail in the introduction, but its usage
has lagged in part because estimating these require solving non-convex optimization problems, so that empirical
performance typically suffers. Here however, we show that when the functional components have a specific form,
we can estimate these models using a convex surrogate method. As we show, its performance is substantially better
than that of previous estimation methods: indeed with this methodology, multiple index models are feasible again as
high-dimensional nonlinear modeling tools.

We demonstrate the applicability of these methods using simulated data from primate retina. The spiking activity
of retinal ganglion cells can be measured in vitro using extracellular recording techniques [18], and recent work has
shown that it is possible to identify the specific cones that provide input to each retinal ganglion cell [6]. Given this
data, the primary piece of missing information is the transformation carried out by the group of bipolar cells that
convey sensory information from cones to retinal ganglion cells. Bipolar cells produce analog responses that induce a
rectifying nonlinear transformation of their inputs [5]. This makes their effects identifiable and motivates the use of a
multiple index model for the responses of retinal ganglion cells.

2 Multiple Index Models

A multiple-index regression model [10] is a semiparametric regression model where the response or output variable
Y 2 R depends on the covariates or input variables X 2 Rp as

Y =

mX

j=1

g

j

(�

T

j

X) + ✏, (1)

where ✏ is additive zero mean noise, independent of X . The functions {g
j

}m
j=1 are assumed to belong to some given

class of functions G, for instance the set of differentiable functions, or monotonically increasing functions. The linear
projections �T

k

X provide unidimensional summaries of the covariates, and each of these is called an index (hence the
name multiple-index model). Another term typically used for these components is that of a ridge function, since the
function g(�

x

) is constant over the hyperplane �

x

= c (so that its function surface looks like a ridge). Given n i.i.d.
samples S = {(Xi

, Y

(i)
), i = 1, ..., n} from the model (1), the model-estimation task comprises estimating both a

parametric component {�
j

}m
j=1 as well as the nonparametric components or functions {g

j

}m
j=1.

Estimation in this model does not suffer from the curse of dimensionality intrinsic to general non-parametric estima-
tion. Such index models have thus been used in many machine learning applications, for instance as product of a
collection of single index functions when g is specified [11, 21, 28].

2.1 A Brief History

When the data is very high-dimensional, it becomes quite difficult not only to visualize the data but also to estimate
any nonparametric function over the data such as a regression function. A popular approach has thus been to reduce the
dimensionality of the data by finding directions to project the data onto. Techniques to pick such projection directions
have a long history, including methods like PCA, ICA and methods by Kruskal [16], Switzer and Wright [25] and
others. Huber [14] provide a nice survey and perspective on such methods: the methods all pick interesting directions
by minimizing specific functions on the projected data. For instance, projection pursuit by Friedman and Tukey [8],
estimates the projection directions by maximizing a function over the projected data consisting of the product of a
density functional and of a robust variant of the standard deviation of the projected data. Huber [14] discuss different
classes of measures of interestingness, and note that many of these reduce to inferring “non-Gaussian” directions so
that the projected data looks least normal. Friedman [7] also emphasized the perspective of visualization, and allowing
the user to pick interesting directions by inspecting 2D projections of the data.

Friedman and Stuetzle [9] then applied this perspective to the task of regression, and proposed estimating the multiple
index regression model in (1) via a stagewise procedure as follows that they termed projection pursuit regression: Sup-
pose at stage m, they have fit m�1 indices {g

j

(�

T

j

X)}m�1
j=1 so that they have the residual r

m

= y�
P

m�1
j=1 g

j
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j

X).
They then first estimate a nonparametric fit g

m

of the residual r
m

to some projection �

T

X for some unit vector

2

To the Rescue!



Index Models and Projections

• When data is high-dimensional, then for {visualization, modeling}, a classical technique 
is based on 

‣ (a) projecting data into lower dimensional space, and 
(b) working with projected data

• Salient Question: How to pick the projection directions?

‣ Friedman: Visualization; inspect 2D projections

‣ Huber: Interestingness 

✦ PCA, ICA, methods by Kruskal, Switzer and Wright, ...

✦ Friedman, Tukey 74: max. product of density and std-dev of projected data



On Index Models and Projections

• Multiple Index Models: Additive Models on Projected Data

• Additive Models:                                      (Hastie and Tibshirani, 90)

‣ Sum of univariate functions of individual co-ordinates

• Multiple Index Models: 

‣ Indices formed by projections

‣ Additive Model over indices: 

Y =
pX

j=1

fj(Xj) + ✏

{Zj = �T
j X}

Y =
X

j

gj(Zj)

=
X

j

gj(�
T
j X)



Projection Pursuit Regression

• Candidate Criterion for picking “interesting” projection directions in multiple 
index model

‣ Minimize squared error

• Projection Pursuit Regression (Friedman and Stuetzle, 81)

‣ Minimize squared error greedily



Backfitting

• Additive Models typically inferred using “backfitting”

‣ Cycle through coordinates, and fit univariate function in that co-ordinate to 
the residual

‣ Can extend back-fitting to multiple-index models



Multiple Index Model Backfitting
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�. Then they fix this nonparametric function g

m

, and optimize for the direction � using the squared error loss
ˆ

E(r

m

� g

m

(�

T

X))

2. While they initially proposed to solve the optimization problem in � using a Rosenbrock
method, they later suggested using a Gauss-Newton procedure instead [10]. After estimating the single-index model
g

m

(�

X

m

) for the m-th stage, they repeat the procedure until some stopping criterion.

Backfitting. Donoho et al. [4], as well as Hastie et al. [10], also suggest using backfitting to refine the projection
directions and the functions: for any given number of indices m, cycle through the indices j till some stopping
criterion, and where at each j we set (g

j

,�

j

) to the single index model g
j

(�

X

j

) obtained from the residual r
j

=

y �
P

l 6=j

g

l

(�

T

l

X) fit to the covariates X .

Such backfitting has been shown to have excellent empirical performance for the specialized class of additive mod-
els [2], where the response is modeled as an additive combination of functions over the individual covariates (so that
the projections are the individual coordinate directions). Further, in stagewise fitting a mistake at an earlier stage could
be corrected by a later index g(�

T

X) but this would be at the expense of interpretability. Note that in our application,
each index has a specific interpretation: namely, the output of a bipolar cell. It is thus important for us to estimate the
existing indices as accurately as possible.

3 Problem Setup

We suppose the number of indices m is given apriori. (This can be set adaptively to a value that minimizes the AIC or
BIC penalized squared error measure on the training set, or just the squared error on a validation set, but we defer this
to the full version.) Further, each index j depends on a subset I

j

= {i1, . . . , ij} of features. In the sequel we use the
shorthand X

j

for X
Ij . We thus have the following model:

Y =

X

j

g

j

(�

T

j

X

j

) + ✏, (2)

where �

j

2 R|Ij | are weights over the covariates in index j, and ✏ is zero mean noise, E(✏) = 0, and independent of
X .

Given such additive noise, Donoho et al. [4] show that minimizing the squared error loss has strong theoretical guar-
antees (note that in particular, when ✏ ⇠ N(0,�

2
) is Gaussian, then minimizing the squared error corresponds to

computing the MLE):

min

{�j2R|Ij |
,gj2G}

1

2n

nX

i=1

(Y

(i) �
mX

j=1

g

j

(�

T

j

X

(i)
j

))

2 (3)

Following the suggestion of [10], we can solve this using an alternating backfitting procedure:

Algorithm 1 Least-Squares Multiple-Index Backfitting
Initialize: �

j

= 0, g
j

= 0; j = 1, . . . ,m.
for outer iterations t = 1, 2, . . . until convergence do

for k = 1, . . . ,m do
Compute the residuals R(i)

k

= Y

(i) �
P

j 6=k

g

j

(�

T

j

X

(i)
j

); i = 1, . . . , n.
Solve for (g

k

,�

k

) by estimating a sparse single-index model with R

k

as output and X

k

as input.
end for

end for

3.1 Single Index Model Estimation

An important step in Algorithm3 is to estimate a single-index model. For simplicity, we overload notation, and suppose
that we have a single index model

Y = g(�

T

X) + ✏, (4)
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method, they later suggested using a Gauss-Newton procedure instead [10]. After estimating the single-index model
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) for the m-th stage, they repeat the procedure until some stopping criterion.

Backfitting. Donoho et al. [4], as well as Hastie et al. [10], also suggest using backfitting to refine the projection
directions and the functions: for any given number of indices m, cycle through the indices j till some stopping
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Such backfitting has been shown to have excellent empirical performance for the specialized class of additive mod-
els [2], where the response is modeled as an additive combination of functions over the individual covariates (so that
the projections are the individual coordinate directions). Further, in stagewise fitting a mistake at an earlier stage could
be corrected by a later index g(�

T

X) but this would be at the expense of interpretability. Note that in our application,
each index has a specific interpretation: namely, the output of a bipolar cell. It is thus important for us to estimate the
existing indices as accurately as possible.

3 Problem Setup

We suppose the number of indices m is given apriori. (This can be set adaptively to a value that minimizes the AIC or
BIC penalized squared error measure on the training set, or just the squared error on a validation set, but we defer this
to the full version.) Further, each index j depends on a subset I
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= {i1, . . . , ij} of features. In the sequel we use the
shorthand X
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for X
Ij . We thus have the following model:
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where �
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2 R|Ij | are weights over the covariates in index j, and ✏ is zero mean noise, E(✏) = 0, and independent of
X .

Given such additive noise, Donoho et al. [4] show that minimizing the squared error loss has strong theoretical guar-
antees (note that in particular, when ✏ ⇠ N(0,�
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) is Gaussian, then minimizing the squared error corresponds to
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Following the suggestion of [10], we can solve this using an alternating backfitting procedure:
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3.1 Single Index Model Estimation

An important step in Algorithm3 is to estimate a single-index model. For simplicity, we overload notation, and suppose
that we have a single index model
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X) + ✏, (4)
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Such backfitting has been shown to have excellent empirical performance for the specialized class of additive mod-
els [2], where the response is modeled as an additive combination of functions over the individual covariates (so that
the projections are the individual coordinate directions). Further, in stagewise fitting a mistake at an earlier stage could
be corrected by a later index g(�

T

X) but this would be at the expense of interpretability. Note that in our application,
each index has a specific interpretation: namely, the output of a bipolar cell. It is thus important for us to estimate the
existing indices as accurately as possible.

3 Problem Setup

We suppose the number of indices m is given apriori. (This can be set adaptively to a value that minimizes the AIC or
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to the full version.) Further, each index j depends on a subset I
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Estimating a SIM model is key!
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Algorithm 2 Solving a single-index model
Initialize: � = 0, g = 0.
for outer iterations t = 1, 2, . . . until convergence do

Fixing g, obtain � by solving:

� 2 arg min

�2Rp

(
1

2n

nX

i=1

(Y
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Fixing �, obtain g by solving
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end for

where ✏ is zero mean noise independent of X , and we are given samples {(X(i)
Y

(i)
)}n

i=1 drawn iid from this model.
We can then estimate the model components (g,�) from these samples via an alternating procedure as:

As Donoho et al. [4] and others show, such alternating steps (or even a finite number of them) can be shown to result
in good estimator provided we are able to obtain the global optima of the corresponding optimization problems. How-
ever, this is a significant caveat because estimating the � parameters in (5) entails solving a non-convex optimization
problem. In figures 3.1 and 3.1, we plot the squared error loss function (as well as a surrogate loss we propose in
the sequel) for n = 100 samples drawn from a single index model (4) where the functional component is the logistic
function g(z) = exp(2z)/(1 + exp(2z)), the parameter � is a random unit norm vector, and the noise is Gaussian
zero mean noise with standard deviation 2.5/

p
sample-mean(g2(z)) so that the signal to noise ratio (SNR) is approx-

imately 2.5. The figures show the empirical squared error loss (5), and a surrogate loss that we propose in the sequel,
as a function of the parametric vector �.

4 Methods for Single Index Models

As the figures 3.1 and 3.1 show, estimating the parameteric vector of a single index model using the squared error loss
function is a non-convex estimation task. The solutions computed using practical methods are thus only suboptimal,
and do not enjoy the strong guarantees available to the global minimum [4]. Moreover, they can be unstable, particu-
larly in the presence of multiple local minima. Our goal is thus to obtain a surrogate loss function that is convex, and
moreover has a nearly identical minimum as the squared error loss.

Towards this, we propose a novel adaptation of the two-stage estimation procedure of Algorithm 3.1, where instead of
using the squared error in (5), we use a convex loss function applied to � that is adapted from the current estimate of
g. For the case of monotonic functions g, by using appropriate classes of Bregman divergences, we obtain an overall
procedure that involves only tractable convex optimization steps, and is provably Fisher consistent.

4.1 Bregman Updates

Consider the population least squares functional, namely

min

g2G,�2Rp
E(Y � g(�

T

X))

2
. (7)

By computing the Hessian with respect to �, it is straightforward to see that this function is not convex in terms of
� for general functions g. (It is convex, for instance, for linear g.) Given this non-convexity, we are motivated to
consider a larger class of loss functions, in particular the class of Bregman divergences. For any Bregman function F

(roughly, a strictly convex differentiable function), the Bregman divergence D

F

(a, b) is defined as,

D

F

(akb) := F (a)� F (b)�rF (b)

T

(a� b), (8)

The Bregman divergence induced by a univariate Bregman function F , between Y and g(�

T

X) is then given by,

D

F

(Y kg(�T

x)) = F (Y )� F (g(�

T

X))� f(g(�

T

X))(Y � g(�

T

X)), (9)
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A surrogate loss

• The squared error loss                              is a notion of divergence 
between 

• Are there are other loss functions, that 

‣ (a) arise as measuring divergence between                         , but are also 

‣ (b) convex in beta

• Yes!

E(Y � g(�TX))2

Y and g(�TX)

Y and g(�TX)



Bregman Divergence

• Given a strictly convex function f, the induced Bregman divergence:

Message-passing for graph-structured linear programs

f

µ′

ν

µ

Df (µ′ ‖ ν)

f(ν) + 〈∇f(ν), µ′ − ν〉

Figure 1: Graphical illustration of a Bregman divergence.

simply the quadratic function

q(µ) :=
1

2

{∑

s∈V

∑

xs∈X

µ2
s(xs) +

∑

(s,t)∈E

∑

(xs,xt)∈X×X

µ2
st(xs, xt)

}
, (8)

defined over nodes and edges of the graph.

Weighted entropic divergence: Another Bregman divergence can be defined by the
weighted sum of Kullback-Leibler (KL) divergences across the nodes and edges. In partic-
ular, letting αs > 0 and αst > 0 be positive weights associated with node s and edge (s, t)
respectively, we define

Dα(µ ‖ ν) =
∑

s∈V

αsD(µs ‖ νs) +
∑

(s,t)∈E

αstD(µst ‖ νst), (9)

where D(p ‖ q) :=
∑

x

(
p(x) log p(x)

q(x) −
[
p(x)− q(x)

])
is the KL divergence. An advantage of

the KL divergence, relative to the quadratic norm, is that it automatically acts to enforce
non-negativity constraints on the pseudomarginals in the proximal minimization problem.
(See Section 3.4 for a more detailed discussion of this issue.) The associated Bregman
function is weighted sum of entropies

hα(µ) =
∑

s∈V

αsHs(µs) +
∑

(s,t)∈E

αstHst(µst), (10)

where Hs and Hst are defined by

Hs(µs) :=
∑

xs∈X

µs(xs) log µs(xs), and

Hst(µst) :=
∑

(xs,xt)∈X×X

µst(xs, xt) log µst(xs, xt),

7

Ravikumar, Agarwal and Wainwright

where for iteration numbers n = 0, 1, 2, . . ., the vector µn denotes current iterate, the
quantity ωn is a positive weight, and Df is a generalized distance function, known as the
proximal function. (Note that we are using superscripts to represent the iteration number,
not for the power operation.)

The purpose of introducing the proximal function is to convert the original LP—which
is convex but not strictly so—into a strictly convex problem. The latter property is de-
sirable for a number of reasons. First, for strictly convex programs, co-ordinate descent
schemes are guaranteed to converge to the global optimum; note that they may become
trapped for non-strictly convex problems, such as the piecewise linear surfaces that arise
in linear programming. Moreover, the dual of a strictly convex problem is guaranteed to
be differentiable (Bertsekas, 1995); a guarantee which need not hold for non-strictly con-
vex problems. Note that differentiable dual functions can in general be solved more easily
than non-differentiable dual functions. In the sequel, we show how for appropriately chosen
generalized distances, the proximal sequence {µn} can be computed using message passing
updates derived from cyclic projections.

We note that the proximal scheme (5) is similar to an annealing scheme, in that it
involves perturbing the original cost function, with a choice of weights {ωn}. While the
weights {ωn} can be adjusted for faster convergence, they can also be set to a constant,
unlike for standard annealing procedures in which the annealing weight is taken to 0. The
reason is that Df (µ ‖µ(n)), as a generalized distance, itself converges to zero as the algorithm
approaches the optimum, thus providing an “adaptive” annealing. For appropriate choice
of weights and proximal functions, these proximal minimization schemes converge to the LP
optimum with at least geometric and possibly superlinear rates (Bertsekas and Tsitsiklis,
1997; Iusem and Teboulle, 1995).

In this paper, we focus primarily on proximal functions that are Bregman divergences (Cen-
sor and Zenios, 1997), a class that includes various well-known divergences, among them
the squared "2-distance and the Kullback-Leibler divergence. We say that f is a Bregman
function if it is continuously differentiable, strictly convex, and has bounded level sets. Any
such function induces a Bregman divergence as follows:

Df (µ′ ‖ ν) := f(µ′) − f(ν) − 〈∇f(ν), µ′ − ν〉 (6)

Figure 1 shows this graphically. This divergence satisfies Df (µ′ ‖ ν) ≥ 0 with equality if and
only if µ′ = ν, but need not be symmetric or satisfy the triangle inequality, so it is only a
generalized distance. We study the sequence {µn} of proximal iterates (5) for the following
choices of divergences.

Quadratic divergence: This choice is the simplest, corresponding to the quadratic norm
across nodes and edges

Q(µ ‖ ν) :=
1

2

∑

s∈V

‖µs − νs‖2 +
1

2

∑

(s,t)∈E

‖µst − νst‖2, (7)

where we have used the shorthand ‖µs − νs‖2 =
∑

xs∈X |µs(xs) − νs(xs)|2, with similar
notation for the edges. The underlying function that induces this Bregman divergence is

6
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Surrogate Bregman Loss

• Squared Error Loss, as a function of beta, fixing g

• Let                              and 
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where f = F

0. The squared error loss function is a special case, obtained by setting F (z) = 1/2z

2. Of interest to us
are alternative choices of Bregman distances; in particular, the following result shows that for any monotonic g, there
is always a Bregman divergence for which estimation of � reduces to a convex problem:

Proposition 1 Consider the single index model (4) when g belongs to the class G of monotonically increasing func-

tions. Then for any g 2 G, there exists a Bregman divergence D

F

(g) for which the estimation of � is a convex problem.

In particular, define G(v) =

R
v

1 g(t)dt, and define the function

F (u) = sup

v2R
v

T

u�G(v), (10)

The Bregman divergence D

F

(g) induced by this choice of F , when applied to the pair y and g(�

T

x), takes the form

D

F

(g)(ykg(�T

x)) = G(�

T

x)� �

T

xy + F (y), (11)

which is a convex function of � whenever g is monotonic.

Note that the function (10) is the Fenchel conjugate [12] of the function G. Overall, this result motivates the following
practical scheme. Since G is convex for monotonic g, optimizing the “surrogate” function (11) for � is a convex
program. On the other hand, for fixed �, estimation of the function g in the single index model (4) is a standard
problem in isotonic regression. Thus, we have the following two-stage procedure in Algorithm 4.1 for estimating a
single index model:

Algorithm 3 Solving a single-index model: Bregman Updates
Initialize: � = 0, g = 0.
for outer iterations t = 1, 2, . . . until convergence do

Fixing g, obtain � by solving:

� 2 arg min

�2Rp

(
1

2n

nX

i=1

⇣
G(�

T

X

(i)
)� Y

(i)
(�

T

X

(i)
)

⌘)
. (12)

Fixing �, obtain g by solving

g 2 argmin

g2G

(
1

2n

nX

i=1

(Y

(i) � g(�

T

X

(i)
))

2

)
. (13)

end for

Theorem 1 Consider a single index model Y = g

⇤
(�

⇤
) + ✏, and suppose we solve the population variant of the loss

function (12) with the nonparametric component g set to g

⇤
, so that,

ˆ

� 2 arg min

�2Rp
E
�
G

⇤
(�

T

X)� Y (�

T

X)

�
. (14)

Then we have that

ˆ

� = �

⇤
.

The theorem states that in the sample limit, and provided we have the right nonparametric function, the Bregman
surrogate loss function computes the right minimum.

5 Application to RGC encoding

We tested our method on simulated data from a retinal ganglion cell encoding model. Here the RGC cell firing rate is
the response Y , and the the cone cell activations are the covariates X . The (learned) index-models g

k

(�

T

k

X) would
denote bipolar cells or subunits that relay information from cones to the RGC cells. We used code provided by the
Chichilnisky lab that simulates the responses of a population of cones providing input to a population of bipolar cells
that feed into a single retinal ganglion cell.

6

L(�) = E(Y � g(�TX))2

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

where f = F

0. The squared error loss function is a special case, obtained by setting F (z) = 1/2z

2. Of interest to us
are alternative choices of Bregman distances; in particular, the following result shows that for any monotonic g, there
is always a Bregman divergence for which estimation of � reduces to a convex problem:

Proposition 1 Consider the single index model (4) when g belongs to the class G of monotonically increasing func-

tions. Then for any g 2 G, there exists a Bregman divergence D

F

(g) for which the estimation of � is a convex problem.

In particular, define G(v) =

R
v

1 g(t)dt, and define the function

F (u) = sup

v2R
v

T

u�G(v), (10)

The Bregman divergence D

F

(g) induced by this choice of F , when applied to the pair y and g(�

T

x), takes the form

D

F

(g)(ykg(�T

x)) = G(�

T

x)� �

T

xy + F (y), (11)

which is a convex function of � whenever g is monotonic.

Note that the function (10) is the Fenchel conjugate [12] of the function G. Overall, this result motivates the following
practical scheme. Since G is convex for monotonic g, optimizing the “surrogate” function (11) for � is a convex
program. On the other hand, for fixed �, estimation of the function g in the single index model (4) is a standard
problem in isotonic regression. Thus, we have the following two-stage procedure in Algorithm 4.1 for estimating a
single index model:

Algorithm 3 Solving a single-index model: Bregman Updates
Initialize: � = 0, g = 0.
for outer iterations t = 1, 2, . . . until convergence do
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The theorem states that in the sample limit, and provided we have the right nonparametric function, the Bregman
surrogate loss function computes the right minimum.

5 Application to RGC encoding

We tested our method on simulated data from a retinal ganglion cell encoding model. Here the RGC cell firing rate is
the response Y , and the the cone cell activations are the covariates X . The (learned) index-models g

k

(�

T

k

X) would
denote bipolar cells or subunits that relay information from cones to the RGC cells. We used code provided by the
Chichilnisky lab that simulates the responses of a population of cones providing input to a population of bipolar cells
that feed into a single retinal ganglion cell.

6

DF (Y k g(�TX) = G(�TX)� �TX Y + F (Y )

is convex in beta, when g is monotonic.



SIM Estimation using Surrogate Bregman Loss
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where f = F

0. The squared error loss function is a special case, obtained by setting F (z) = 1/2z

2. Of interest to us
are alternative choices of Bregman distances; in particular, the following result shows that for any monotonic g, there
is always a Bregman divergence for which estimation of � reduces to a convex problem:

Proposition 1 Consider the single index model (4) when g belongs to the class G of monotonically increasing func-

tions. Then for any g 2 G, there exists a Bregman divergence D

F

(g) for which the estimation of � is a convex problem.

In particular, define G(v) =

R
v

1 g(t)dt, and define the function

F (u) = sup

v2R
v

T

u�G(v), (10)

The Bregman divergence D

F

(g) induced by this choice of F , when applied to the pair y and g(�

T

x), takes the form

D

F

(g)(ykg(�T

x)) = G(�

T

x)� �

T

xy + F (y), (11)

which is a convex function of � whenever g is monotonic.

Note that the function (10) is the Fenchel conjugate [12] of the function G. Overall, this result motivates the following
practical scheme. Since G is convex for monotonic g, optimizing the “surrogate” function (11) for � is a convex
program. On the other hand, for fixed �, estimation of the function g in the single index model (4) is a standard
problem in isotonic regression. Thus, we have the following two-stage procedure in Algorithm 4.1 for estimating a
single index model:

Algorithm 3 Solving a single-index model: Bregman Updates
Initialize: � = 0, g = 0.
for outer iterations t = 1, 2, . . . until convergence do

Fixing g, obtain � by solving:

� 2 arg min

�2Rp

(
1

2n

nX

i=1

⇣
G(�

T

X

(i)
)� Y

(i)
(�

T

X

(i)
)

⌘)
. (12)

Fixing �, obtain g by solving

g 2 argmin

g2G

(
1

2n

nX

i=1

(Y

(i) � g(�

T

X

(i)
))

2

)
. (13)

end for

Theorem 1 Consider a single index model Y = g

⇤
(�

⇤
) + ✏, and suppose we solve the population variant of the loss

function (12) with the nonparametric component g set to g

⇤
, so that,

ˆ

� 2 arg min

�2Rp
E
�
G

⇤
(�

T

X)� Y (�

T

X)

�
. (14)

Then we have that

ˆ

� = �

⇤
.

The theorem states that in the sample limit, and provided we have the right nonparametric function, the Bregman
surrogate loss function computes the right minimum.

5 Application to RGC encoding

We tested our method on simulated data from a retinal ganglion cell encoding model. Here the RGC cell firing rate is
the response Y , and the the cone cell activations are the covariates X . The (learned) index-models g

k

(�

T

k

X) would
denote bipolar cells or subunits that relay information from cones to the RGC cells. We used code provided by the
Chichilnisky lab that simulates the responses of a population of cones providing input to a population of bipolar cells
that feed into a single retinal ganglion cell.
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Application: Retinal Modeling

• Simulations of {cones, bi-polar cells, retinal ganglion cells} 
from Chichilnisky Lab

‣ Corresponding to 48015 visual (white noise) stimuli:

‣ Simulated responses of 134 cones, subsets of which provide input to 20 
bipolar cells that feed into a single retinal ganglion cell.

‣ Code allows us to fix the nonlinearity in bipolar cell outputs

✦ We use exponential, sigmoidal, rectifying (hinge) functions



Parameter and Prediction Error
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Figure 3: (Left) Average error in recovering the (cone to bipolar) weights of the multiple index models; (Right) Error
in predicting the RGC cell firing rates. We compare our Bregman surrogate loss based method with the usual least
squares estimation method.
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Figure 4: The true functions (exponential) and the functions estimated by the Bregman method for three out of the
twenty indices.

The code generated 48015 frames of white noise stimuli, which were actually used as visual stimuli in one of the
Chichilnisky lab experiments. The code also simulated cone responses to the stimulus by projecting the stimuli through
a spatiotemporal filter for every cone. (These were assumed to be deterministic, justified by the fact that the visual
display and temporal refresh rate were optimized to drive individual coness as strongly as possible). There were 134
cones feeding into 20 bipolar cells that fed into a single retinal ganglion cell. The simulation code performs as follows:

• generates 20 bipolar cells that each receive input from a randomly-selected, contiguous set of cones.
• sums cone activations to determine the input to each bipolar cell.
• applies a nonlinearity to the output of the bipolar cells,
• sums the bipolar cell outputs to form the input to a retinal ganglion cell, and scales linearly to achieve an

instantaneous spike rate
• generates a Poisson spike count with the desired rate for each frame of the visual stimulus.

We used three kinds of nonlinearities in step (3) of the simulation. 1. Exponential nonlinearity: g(z) = exp(b+ az),
a = 3.8394, and b = 0.0277 (values set in the simulation code to match experimentally observed non-linearities in
bipolar cells) 2. Sigmoidal nonlinearity: g(z) = exp(az)/(1 + exp(az)), where a=4. 3. Rectifying nonlinearity:
g(z) = max(0, z).

We used 1000 randomly selected frames as test set and the rest of the 47015 frames as training set. We compared our
Bregman-divergence based estimation method to the standard least squares estimation method. We computed both
the error in predicting the RGC cell firing rates (response prediction error), and average `2 norm error of the weight
estimates. As figure 3 shows, the Bregman based method is substantially more accurate.

Figures 4, 5 and 6 also shows that we are able to recover the functional components of the multiple index model, for all
three types of functions. Based on these strong results, we are now working on applying this to real data from retinal
ganglion cell experiments, so that we can nonparametrically estimate the nonlinearities in the bipolar activations.
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Function Recovery: Exponential
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Figure 3: (Left) Average error in recovering the (cone to bipolar) weights of the multiple index models; (Right) Error
in predicting the RGC cell firing rates. We compare our Bregman surrogate loss based method with the usual least
squares estimation method.
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Figure 4: The true functions (exponential) and the functions estimated by the Bregman method for three out of the
twenty indices.

The code generated 48015 frames of white noise stimuli, which were actually used as visual stimuli in one of the
Chichilnisky lab experiments. The code also simulated cone responses to the stimulus by projecting the stimuli through
a spatiotemporal filter for every cone. (These were assumed to be deterministic, justified by the fact that the visual
display and temporal refresh rate were optimized to drive individual coness as strongly as possible). There were 134
cones feeding into 20 bipolar cells that fed into a single retinal ganglion cell. The simulation code performs as follows:

• generates 20 bipolar cells that each receive input from a randomly-selected, contiguous set of cones.
• sums cone activations to determine the input to each bipolar cell.
• applies a nonlinearity to the output of the bipolar cells,
• sums the bipolar cell outputs to form the input to a retinal ganglion cell, and scales linearly to achieve an

instantaneous spike rate
• generates a Poisson spike count with the desired rate for each frame of the visual stimulus.

We used three kinds of nonlinearities in step (3) of the simulation. 1. Exponential nonlinearity: g(z) = exp(b+ az),
a = 3.8394, and b = 0.0277 (values set in the simulation code to match experimentally observed non-linearities in
bipolar cells) 2. Sigmoidal nonlinearity: g(z) = exp(az)/(1 + exp(az)), where a=4. 3. Rectifying nonlinearity:
g(z) = max(0, z).

We used 1000 randomly selected frames as test set and the rest of the 47015 frames as training set. We compared our
Bregman-divergence based estimation method to the standard least squares estimation method. We computed both
the error in predicting the RGC cell firing rates (response prediction error), and average `2 norm error of the weight
estimates. As figure 3 shows, the Bregman based method is substantially more accurate.

Figures 4, 5 and 6 also shows that we are able to recover the functional components of the multiple index model, for all
three types of functions. Based on these strong results, we are now working on applying this to real data from retinal
ganglion cell experiments, so that we can nonparametrically estimate the nonlinearities in the bipolar activations.
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Function Recovery: Sigmoidal
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Figure 5: The true functions (sigmoidal) and the functions estimated by the Bregman method for three out of the
twenty indices.
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Figure 6: The true functions (rectification) and the functions estimated by the Bregman method for three out of the
twenty indices.
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Function Recovery: Rectifying
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Figure 5: The true functions (sigmoidal) and the functions estimated by the Bregman method for three out of the
twenty indices.
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Figure 6: The true functions (rectification) and the functions estimated by the Bregman method for three out of the
twenty indices.
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Summary

• Multiple Index Models provide a natural semi-parametric framework in many 
settings: in neural coding in particular

• Their use till now has been limited due to problems with inference given non-
convex objectives

• We provide a surrogate loss that is convex in the projection weights

• Modern non-parametrics needs to marry recent advances in convex/
variational optimization and structural constraints to classical non-
parametrics



Thank You!


