Thorough analysis of log data with dependency rules: Practical solutions and theoretical challenges

Typical log data

- timestamps (beginning, end)
- user id
- device id
- event type
- objects
- other characteristics

Example: Log from cows' feeding automata

Dependency rule $X \to A$

- expresses statistical dependency
- evaluated by statistical goodness measures (e.g. p, χ^2 , MI)
- no minimum frequency thresholds
- ideally non-redundant

Given "Rainy day \rightarrow Wet dog", "Rainy day and Autumn \rightarrow Wet dog" hardly adds any new information. Dependency rules are attractive but restricted

Efficient algorithms & globally optimal results

but should be binary data!

How to handle log data?

Main problems in log data

- How to balance between groups and individuals? (common trends, individual regularities and peculiarities)
- 2. How to discretize numerical and periodic variables optimally?
- 3. How to extract attributes from intrinsic dimensions? (spatial & temporal contexts, interactions)

1. Balancing between groups and individuals

- 1.1 Incorporating attribute hierarchies
 - background information, different abstraction levels
- 1.2 Handling individual differences in numerical variables
 - New features which describe normality or exceptionality of values! (w.r.t. individual or reference group)
- 1.3 Focusing on individuals and exceptional events
 - Search for $X \to A$ or $QA \to B$, where A interesting

1.1 Incorporating attribute hierarchies

- How to compare $thief \land Q \to A$ to $cow21 \land Q \to A$? or $(thief \lor robber) \land Q \to A$?
- Challenge: Statistical test + search algorithm!
- Small hierarchies can be handled with extra attributes and constraints

2. Discretizing numerical and periodic variables

- Problem: Different discretizations of A can be optimal for different dependencies!
- ⇒ Challenge: How to discretize dynamically during the search?
- Preprocessing tricks can simulate dynamic discretization
 - works when the number of numerical variables is small
 - otherwise use coarser atomic intervals or concentrate on exceptional values

Example (tricks + Kingfisher)

rule	$\ln(p)$	fr
$P1day < 5, Amount_{NI} < 0.0 \rightarrow Theft$	-1005	1343
$P1day < 6, Amount_{NI} < 0.0 \rightarrow Theft$	-942	1382
$P1day < 5, Amount_{NI} < 0.5 \rightarrow Theft$	-882	1343
$P1day < 5, Amount_{NI} < 1.0 \rightarrow Theft$	-813	1343
$P1day < 5, Amount_{NI} < 1.5 \rightarrow Theft$	-781	1343
$P1day < 6, Amount_{NI} < 0.5 \rightarrow Theft$	-763	1382
$P1day < 5, Amount_{NI} < 2.0 \rightarrow Theft$	-763	1343

P1day = day from the beginning of period 1 $Amount_{NI} = individually normalized amount$

3. Opening intrinsic dimensions

A new research area with great potential!

Spatial context

- What is happening in the neighbouring devices?
- Temporal context
 - Event history of an individual, a device, or the whole cowhouse?
- Social interactions

Conclusions

- Practical tricks suffice with "simple" log data
- But log data can be complex!
 - log data from web-stores (detailed market baskets + user profiles)
 - mobile devices with GPS and sensors
 - combining log data from different devices
- Important problems in analyzing other heterogeneous real world data, as well!