

Enhancing the Analysis of Large Multimedia Applications Execution Traces with FrameMiner

C. Kamdem, L. Fopa, N. Ibrahim, A. Termier, M.-C. Rousset, T. Washio

christiane.kamdem-kengne@imag.fr,leon-constantin.fopa@imag.fr

December 10th, 2012 PTDM@ICDM'12

Context

- Embedded systems
 - × MPSoc: System on Chips with multiple processors

Context

- Embedded systems
 - × MPSoc: System on Chips with multiple processors

- × Video decoding
- × Challenging issue using MPSoc

Context

- Embedded systems
 - × MPSoc: System on Chips with multiple processors

• Multimedia applications

- \times Video decoding
- × Challenging issue using MPSoc
- Traditional debugging techniques are not optimal

Context

- Embedded systems
 - × MPSoc: System on Chips with multiple processors
- Multimedia applications
 - \times Video decoding
 - × Challenging issue using MPSoc

Context

• Huge amount of traces

 \implies Example: 7GB of traces for less than 5mn of video decoding

2 Problem statement

FrameMiner Process

4 Evaluation

State of the art - Traces Analysis

✓ Visualization [Stein,2003],[Vite,2010]

State of the art - Traces Analysis

✓ Visualization [Stein,2003],[Vite,2010]

Information overload

Figure: Paje, An interactive visualization tool

State of the art - Traces Analysis

✓ Visualization [Stein,2003],[Vite,2010]

Information overload

Figure: Paje, An interactive visualization tool

 \implies Reduce size of execution traces

State of the art - Traces Analysis

- ✓ Visualization [Stein,2003],[Vite,2010]
 - Information overload
 - \implies Reduce size of execution traces
- ✓ Reduction [Dugerdil,2007],[chan et al.,2003]

State of the art - Traces Analysis

- ✓ Visualization [Stein,2003],[Vite,2010]
 - Information overload
 - \implies Reduce size of execution traces
- ✓ Reduction [Dugerdil,2007],[chan et al.,2003]
 - Not always representative of the entire trace

State of the art - Traces Analysis

✓ Visualization [Stein,2003],[Vite,2010]

- Information overload
 - \implies Reduce size of execution traces
- ✓ Reduction [Dugerdil,2007],[chan et al.,2003]
 - Not always representative of the entire trace
 - \implies Abstract execution traces

Our goal: Abstraction

9.5054 9.5073 9.5081 9.5083 9.5084 9.5096	GetFrame ExitGet CS produc Interrupt Period ExitI Interrupt Soft
9.5102	ExitS
9.5127	ExitII
9.5154	CheckData
9.5260	FillJob
9.5715	CS VGA
9.5845	CS produc
9.5974	GetFrame
9.6012	ExitGet
9.6125	Interrupt Hand
9.6155	Exitl
9.6234	ExitIT
9.6315	Interrupt Soft
9.6405	Interrupt Period
9.6483	Exitl
9.6514	Interrupt Soft
9.6622	ExitS
9.6715	ExitIT
9.6811	CS produc
9.6898	CheckData
9.6932	FillJob
9.6987	CS VGA
9.7001	Interrupt Hand

Our goal: Abstraction

	Init
9.5081 9.5083 9.5084 9.5096 9.5102 9.5127 9.5124	CS produc Interrupt Period Exitl Interrupt Soft ExitS ExitIT Check Data
9.5260 9.5715 9.5845 9.5974	FillJob CS VGA CS produc GetFrame
9.6012 9.6125 9.6155 9.6234 9.6315	ExitGet Interrupt Hand ExitI ExitIT Interrupt Soft
9.6405 9.6483 9.6514 9.6622 9.6715	Interrupt Period Exitl Interrupt Soft ExitS ExitIT
9.6811 9.6898 9.6932 9.6987 9.7001	CS produc CheckData FillJob CS VGA Interrupt Hand

Our goal: Abstraction

	Init
	Interruption
9.5154 9.5260 9.5715 9.5845 9.5974 9.6012 9.6125 9.6125 9.6234 9.6315 9.6483 9.6514 9.66483 9.6622 9.6715 9.6848 9.6838 9.6838 9.6832 9.6937	CheckData Fillubo CS produc GetFrame ExitGet Interrupt Hand ExitI Interrupt Soft Interrupt Soft Interrupt Soft ExitI CS produc CS produc CS produc CS produc CS VGA Interrupt Hand

Our goal: Abstraction

Our goal: Abstraction

 Abstract series of low level events: blocks

 \implies blocks are automatically discovered

Our goal: Abstraction

 Abstract series of low level events: blocks

 \implies blocks are automatically discovered

• A frame is identified by two events: *start* and *end* events

			_
	9.5054	GetFrame	T
	9.5073	ExitGet	
	9,5081	CS produc	
<i>F</i> ₁	9.5083	Interrupt Period	
F_{1}	9.5084	Exitl	
	9.5096	Interrupt Soft	
	9.5102	ExitS	
	9.5127	ExitIT	
	9.5154	CheckData	
	9.5260	FillJob	
	9.5715	CS VGA	Τ
	9.5845	CS produc	
1	9.5974	GetFrame	Т
	9.6012	ExitGet	
	9.6125	Interrupt Hand	
	9.6155	Exit	
	9.6234	ExitIT	
F	9.6315	Interrupt Soft	
F ₁	9.6405	Interrupt Period	
	9.6483	Exitl	
	9.6514	Interrupt Soft	
	9.6622	ExitS	
	9.6715	ExitIT	
	9.6811	CS produc	
	9.6898	CheckData	
	9.6932	FillJob	4
	9.6987	CS VGA	T
	9,7001	Interrupt Hand	1

Our goal: Abstraction

- Abstract series of low level events: blocks
 - \implies blocks are automatically discovered
- A frame identified by two events: *start* and *end* events

Our goal: Abstraction

- Abstract series of low level events: blocks
 - \implies blocks are automatically discovered
- A frame identified by two events: *start* and *end* events

Our problem: Rewrite each frame into a short description with a small set of blocks

Definitions

example

Let $S = \{B_1, B_2, B_3, B_4\}$ with $B_1 = \langle GetFrame, exitGet \rangle$ $B_2 = \langle InterrupPeriod, exitI, InterruptSoft, exitS, exitT \rangle$

	1	9.5054	GetFrame
		9.5073	ExitGet
		9.5081	CS produc
		9.5083	Interrupt Period
F	1	9.5084	Exitl
		9.5096	Interrupt Soft
		9.5102	ExitS
		9.5127	ExitIT
F		9.5154	CheckData
	+	9.5260	FillJob
	1	9.5715	CS VGA
		9.5845	CS produc
1	1	9.5974	GetFrame
		9.6012	ExitGet
		9.6125	Interrupt Hand
		9.6155	Exitl
		9.6234	ExitIT
F		9.6315	Interrupt Soft
r 2		9.6405	Interrupt Period
		9.6483	Exitl
		9.6514	Interrupt Soft
		9.6622	ExitS
		9.6715	ExitIT
		9.6811	CS produc
		9.6898	CheckData
		9.6932	FillJob
		9.6987	CS VGA
		9.7001	Interrupt Hand

 $\begin{array}{l} B_{3} = \langle \textit{CheckData}, \textit{FillJob} \rangle \\ B_{4} = \langle \textit{InterruptSoft}, \textit{exitS}, \textit{exitT}, \textit{CSProduc} \rangle \end{array}$

Definitions

example

Let $S = \{B_1, B_2, B_3, B_4\}$ with $B_1 = \langle GetFrame, exitGet \rangle$ $B_2 = \langle InterrupPeriod, exitI, InterruptSoft, exitS, exitT \rangle$

	1	9.5054	GetFrame	
		9.5073	ExitGet	
		9.5081	CS produc	
		9.5083	Interrupt Period	
F	F ₁	9.5084	Exitl	
		9.5096	Interrupt Soft	
		9.5102	ExitS	
		9.5127	ExitIT	
		9.5154	CheckData	
	+	9.5260	FillJob	
	-	9.5715	CS VGA	-
		9.5845	CS produc	
- 6	Ť	9.5974	GetFrame	
		9.6012	ExitGet	
		9.6125	Interrupt Hand	
		9.6155	Exitl	
		9.6234	ExitIT	
F		9.6315	Interrupt Soft	
r 2		9.6405	Interrupt Period	1
		9.6483	Exitl	
		9.6514	Interrupt Soft	B_2
		9.6622	ExitS	
		0.6715	ExitIT	
		9.6811	CS produc	
		9.6898	CheckData	
	*	9.6932	FillJob	
		9.6987	CS VGA	
		9.7001	Interrupt Hand	

 $\begin{array}{l} B_{3} = \langle \textit{CheckData}, \textit{FillJob} \rangle \\ B_{4} = \langle \textit{InterruptSoft}, \textit{exitS}, \textit{exitT}, \textit{CSProduc} \rangle \end{array}$

Definitions

example

Let $S = \{B_1, B_2, B_3, B_4\}$ with $B_1 = \langle GetFrame, exitGet \rangle$ $B_2 = \langle InterrupPeriod, exitI, InterruptSoft, exitS, exitT \rangle$

	Ť	9.5054	GetFrame
		9.5073	ExitGet
		9.5081	CS produc
		9.5083	Interrupt Period
F_{1}		9.5084	Exitl
	1	9.5096	Interrupt Soft
		9.5102	ExitS
		9.5127	ExitIT
		9.5154	CheckData
	Ť.	9.5260	FillJob
		9.5715	CS VGA
		9.5845	CS produc
	Ť	9.5974	GetFrame] P
		9.6012	ExitGet
		9.6125	Interrupt Hand
		9.6155	Exitl
		9.6234	ExitIT
F		9.6315	Interrupt Soft
1 2		9.6405	Interrupt Period
		9.6483	Exitl
		9.6514	Interrupt Soft
		9.6622	ExitS B ₄
		9.6715	ExitIT
		9.6811	CS produc
		9.6898	CheckData 1 B
-	¥	9.6932	FillJob J 23
		9.6987	CS VGA
		9.7001	Interrupt Hand

 $\begin{array}{l} B_{3} = \langle \textit{CheckData}, \textit{FillJob} \rangle \\ B_{4} = \langle \textit{InterruptSoft}, \textit{exitS}, \textit{exitT}, \textit{CSProduc} \rangle \end{array}$

Definitions

example

Let $S = \{B_1, B_2, B_3, B_4\}$ with $B_1 = \langle GetFrame, exitGet \rangle$ $B_2 = \langle InterrupPeriod, exitI, InterruptSoft, exitS, exitT \rangle$

 $\begin{array}{l} B_{3} = \langle \textit{CheckData}, \textit{FillJob} \rangle \\ B_{4} = \langle \textit{InterruptSoft}, \textit{exitS}, \textit{exitT}, \textit{CSProduc} \rangle \end{array}$

Definitions local coverage Coverage A coverage of F = {F₁, F₂} using S is C = {L₁, L₂} with L₁ = (B₁, B₃) a local coverage F₁ The covering degree is 0.5 coverage rank k-golden set

Definitions

example

Let $S = \{B_1, B_2, B_3, B_4\}$ with $B_1 = \langle GetFrame, exitGet \rangle$ $B_2 = \langle InterrupPeriod, exitI, InterruptSoft, exitS, exitT \rangle$

 $\begin{array}{l} B_{3} = \langle \textit{CheckData}, \textit{FillJob} \rangle \\ B_{4} = \langle \textit{InterruptSoft}, \textit{exitS}, \textit{exitT}, \textit{CSProduc} \rangle \end{array}$

Definitions

- local coverage
- 2 coverage
- coverage rank coverRank(S_1, \mathcal{F}) = Max(0.25, 0.5, 0.33) with $S_1 = \{B_1, B_3, B_4\}$

k-golden set

Definitions

example

Let $S = \{B_1, B_2, B_3, B_4\}$ with $B_1 = \langle GetFrame, exitGet \rangle$ $B_2 = \langle InterrupPeriod, exitI, InterruptSoft, exitS, exitT \rangle$

_			
	9.5054	GetFrame	R
	9.5073	ExitGet	^D 1
	9.5081	CS produc	- I
	9,5083	Interrupt Period	1
F_{1}	9,5084	Exitl	
	9,5096	Interrupt Soft	B_2
	9.5102	ExitS	
	9.5127	ExitIT	
	9,5154	CheckData	i.
	9 5260	Fill lob	<i>B</i> ₃
-	9.5/15	CSVGA	-
	9.5845	CS produc	
-	9 5974	GetFrame	1
	9,6012	ExitGet	B_1
	9.6125	Interrupt Hand	- 1
	9 6155	Fxitl	
	9 6234	ExitIT	
1005	9 6315	Interrupt Soft	
F_2	9 6405	Interrupt Period	1
	9 6483	Fxitl	
	9 6514	Interrunt Soft	B.
	9 6622	FxitS	- 2
	9 6715	ExitIT	
	9 6811	CS produc	- I
	9 6898	CheckData	1
	9 6932	Fillloh	B_3
-	9 6987	CS VGA	
	9 7001	Interrupt Hand	
	0001	interrupt Fidilia	

 $\begin{array}{l} B_{3} = \langle \textit{CheckData}, \textit{FillJob} \rangle \\ B_{4} = \langle \textit{InterruptSoft}, \textit{exitS}, \textit{exitT}, \textit{CSProduc} \rangle \end{array}$

local coverage coverage coverage rank

• k-golden set $S_2 = \{B_1, B_2, B_3\}$ is the 3-goldenset with coverRank $(S_2, \mathcal{F}) = 0.64$

Problem statement submodular function maximization problem

Find a *k-golden* set of blocks that provides the best coverage

- ✓ Well known NP-Hard problem: $max{f(S) : |S| ≤ k}$ [Nemhauser et al.,1978][Kulik,2009]
- $\checkmark\,$ Studied in particular for resource allocation
- $\checkmark\,$ Proved that the lower bound of any local optimum f , found by a greedy algorithm $\geq\,\,63\%$

Problem statement submodular function maximization problem

Find a *k-golden* set of blocks that provides the best coverage

- ✓ Well known NP-Hard problem: $max{f(S) : |S| ≤ k}$ [Nemhauser et al.,1978][Kulik,2009]
- $\checkmark\,$ Studied in particular for resource allocation
- $\checkmark\,$ Proved that the lower bound of any local optimum f , found by a greedy algorithm $\geq\,\,63\%$
 - set of blocks obtained by applying profSpan [Zou et al.,2010]

Problem statement submodular function maximization problem

Find a *k-golden* set of blocks that provides the best coverage

- ✓ Well known NP-Hard problem: $max{f(S) : |S| ≤ k}$ [Nemhauser et al.,1978][Kulik,2009]
- $\checkmark\,$ Studied in particular for resource allocation
- $\checkmark\,$ Proved that the lower bound of any local optimum f , found by a greedy algorithm $\geq\,\,63\%$
 - set of blocks obtained by applying profSpan [Zou et al.,2010]
 - **f** is the function of Coverage Rank

FrameMiner Process

Experimentation settings

- Real trace of embedded MP4 video decoding
 - 240 frames and 123575 events
- ◊ Intel Xeon X4760 processor: 2.66 GHZ and 64 GB of RAM
- ◊ Exhaustive approach: baselineFrame
- ◊ Profspan: support threshold of 20%

Comparative assessment

 90% of the optimal solution with an execution three orders of magnitude faster.

Subjective assessment

Reduction

• 70% of reduction in the information to handle

Reduction

• 70% of reduction in the information to handle

→ The programmer can now focus on blocks, instead of individual events

(a)

(b)

Conclusion

• An original approach to abstract an execution trace

 \implies A great simplification of trace exploration

• An efficient greedy algorithm that automatically find interesting blocks

\implies A significant reduction of the execution trace volume

Further directions

- Automatic labelling
- Ø Multicore traces
- Beyond Coverage rank function

Questions

Thank you for your kind attention

