Bioinformatics and Computerscience

Data collection

Network Inference

Network-based dataintegration

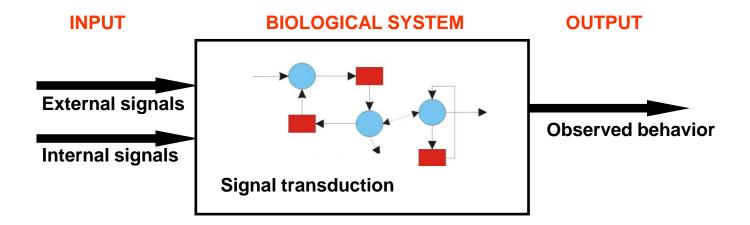
- 1. ARRAY BASED
- 2. NEXT-GEN SEQUENCING RNA-Seq analysis ChIP-seq Bulked segregant analysis
- 1. Sequence-based data analysis MotifSuite
- ModuleDigger Crossed
- 2. Network reconstruction

Lemone

Distiller

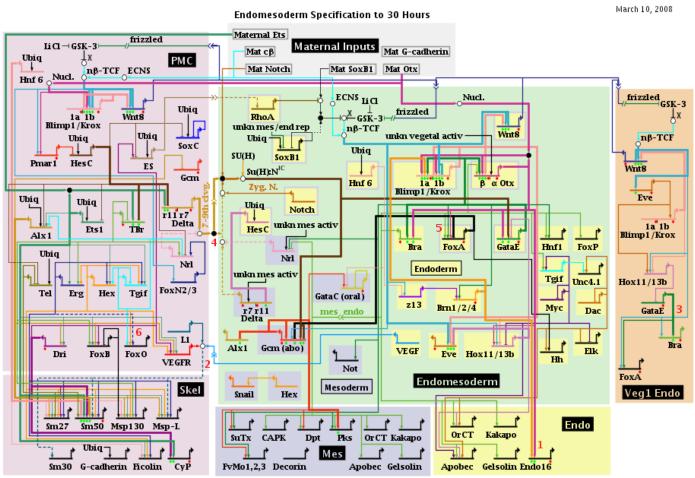
Comodo

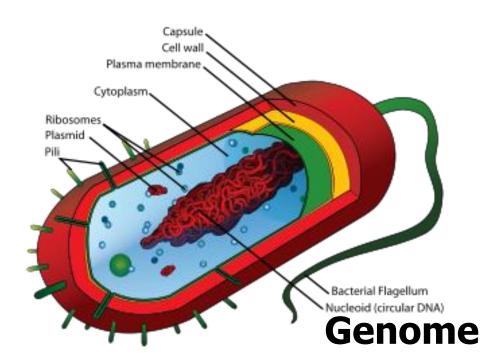
Bayesian network reconstruction


- 1. Network-based analysis of unstructured gene lists
- 2. Network-based gene prioritization
- 3. Network-based eQTL analysis
- 4. Network-based subtyping

- Development of methods that assist systems biologists
- Methods based on data-mining, statistics
- Unique in combining biologically relevant assumptions with rigorous statistical and datamining framework (pragmatic but not too much ad hoc)
- All tools have been validated on real biological cases

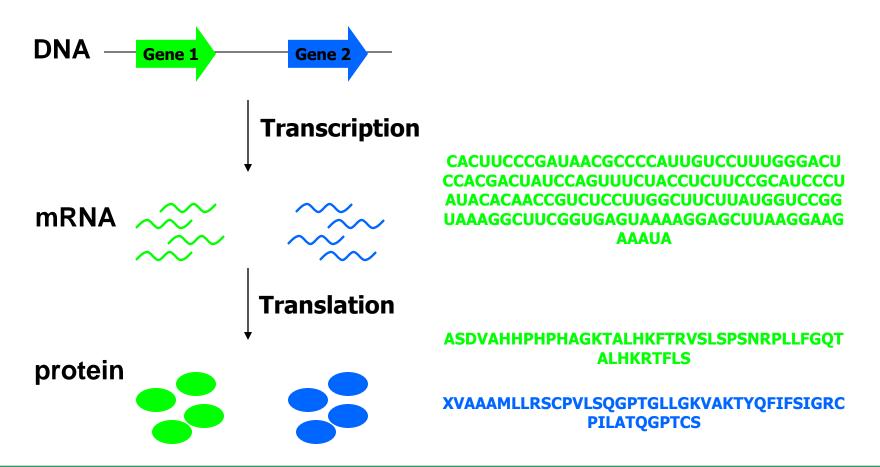
http://bioinformatics.psb.ugent.be/DBN/dbn/software





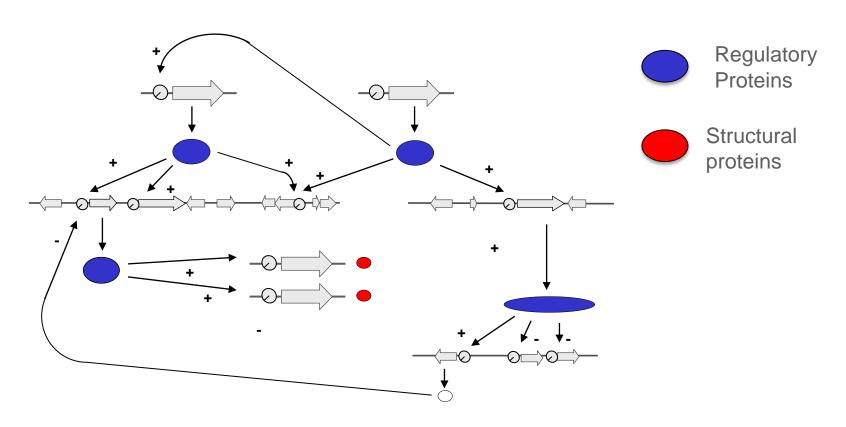
Ubiq=ubiquitous; Mat = maternal; activ = activator; rep = repressor; unkn = unknown; Nucl. = nuclearization; $\chi = \beta$ -catenin source; n β -TCF = nuclearized b- β -catenin-Tcf1; ES = early signal; ECNS = early cytoplasmic nuclearization system; Zyg. N. = zygotic Notch

Copyright © 2001-2008 Hamid Bolouri and Eric Davidson



AGCACTGTCCACTGCATGGTGAGGATGGGGGTGAGCTCCCT TTGTGGCTAGGTGCTTAAACGTCTATCGGACGCTCAGTGAA GGGCTATTGCGGGGTAACAGGAAACCCTGAGGTGCT GATAGGTCAAAGATGGAGAAGGCGTAGGGATATGTG TTGGCAGAGGAACCGAAGAATACCAGGCCATTTCCG **AAGCCACTCATTTTCCTCGAATTCCTTCTTTATGCCTTC** AGTCTCTATTGACCGTAAATTTGGTTGTTGTCTCCCAGCTGT TTATTTCTGTAACAGATCTTGGAGGCTGCGGTCTGGATCCCT CGCCAAGAACCAGATCCAGGAGAAAACGTGCTCAACGTGCA GCTCTGCTCCTACTGATTATAGCCCCACAGATGACATCGCTC CATAGTCACACCAAGTCTCCTGTGGGAGTCTTGCTCCTCGTT CTCAGTGTCTGTTACAGCTCGGTATTTTAGTGTCAGGACGTC GGCTCCCAGCCCGCATCTCCGCTCAGCAATGCCATTATCTTC TCAGCCAAGTCCTAGAAATGGGTTGGCTTCCCATTTGCAA **AAACATCGCTCCATAGTCACACCAAGTCTCCTGTGGG AGTCTTGCTCCTCGTTCTCAGTGTCTGTTACAGCTCG** GTATTTTAGTGTCAGGACGTCGGCTCCCAGCCCGCAT CTCCGCTCAGCAATGCCATTATCTTCTCAGCCAAGTCCT AGAAATGGGTTGGCTTCCCATTTGCAAAAACATCGCTCCATA **GTCACACCAAGTCTCCTGTGGG**





Regulatory Proteins

Structural proteins

Static network is encoded in the genome

Not all proteins are made at all times (network is condition-dependent)

State of the network can be measured through gene/protein expression

cell culture robot

HPLC

PCR

microarray platform

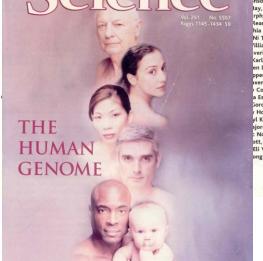
MALDI-TOF mass spectrometer

DNA sequencers

Encoding of the network

Genome

AGCACTGTCCACTGCATGGTGAGGATGGGGGTGAGCTCCCT TTGTGGCTAGGTGCTTAAACGTCTATCGGACGCTCAGTGAA GGGCTATTGCGGGGTAACAGGAAACCCTGAGGTGCT GATAGGTCAAAGATGGAGAAGGCGTAGGGATATGTG TTGGCAGAGGAACCGAAGAATACCAGGCCATTTCCG **AAGCCACTCATTTTCCTCGAATTCCTTCTTTATGCCTTC** AGTCTCTATTGACCGTAAATTTGGTTGTTGTCTCCCAGCTGT TTATTTCTGTAACAGATCTTGGAGGCTGCGGTCTGGATCCCT CGCCAAGAACCAGATCCAGGAGAAAACGTGCTCAACGTGCA GCTCTGCTCCTACTGATTATAGCCCCACAGATGACATCGCTC CATAGTCACACCAAGTCTCCTGTGGGAGTCTTGCTCCTCGTT CTCAGTGTCTGTTACAGCTCGGTATTTTAGTGTCAGGACGTC GGCTCCCAGCCCGCATCTCCGCTCAGCAATGCCATTATCTTC TCAGCCAAGTCCTAGAAATGGGTTGGCTTCCCATTTGCAA **AAACATCGCTCCATAGTCACACCAAGTCTCCTGTGGG AGTCTTGCTCCTCGTTCTCAGTGTCTGTTACAGCTCG** GTATTTTAGTGTCAGGACGTCGGCTCCCAGCCCGCAT CTCCGCTCAGCAATGCCATTATCTTCTCAGCCAAGTCCT AGAAATGGGTTGGCTTCCCATTTGCAAAAACATCGCTCCATA GTCACACCAAGTCTCCTGTGGG



The Sequence of the Human Genome

J. Craig Venter, 1* Mark D. Adams, 1 Eugene W. Myers, 1 Peter W. Li, 1 Richard J. Mural, 1 Granger G. Sutton, 1 Hamilton O. Smith, 1 Mark Yandell, 1 Cheryl A. Evans, 1 Robert A. Holt, Jeannine D. Gocayne, Peter Amanatides, Richard M. Ballew, Daniel H. Huson, Jennifer Russo Wortman, 1 Qing Zhang, 1 Chinnappa D. Kodira, 1 Xianggun H. Zheng, 1 Lin Cl Marian Skupski, 1 Gangadharan Subramanian, 1 Paul D. Thomas, 1 Jinghui Zhang, George L. Gabor Miklos,2 Catherine Nelson,3 Samuel Broder,1 Andrew G. Clark,4 Joe Nade Victor A. McKusick, 6 Norton Zinder, 7 Arnold J. Levine, 7 Richard J. Roberts, 8 Mel Simon, Carolyn Slayman, 10 Michael Hunkapiller, 11 Randall Bolanos, 1 Arthur Delcher, 1 Ian Dew, 1 Danie Michael Flanigan, Liliana Florea, Aaron Halpern, Sridhar Hannenhalli, Saul Kravitz, Samue Clark Mobarry, 1 Knut Reinert, 1 Karin Remington, 1 Jane Abu-Threideh, 1 Ellen Beasley, 1 Kendra Vivien Bonazzi, Rhonda Brandon, Michele Cargill, Ishwar Chandramouliswaran, Rosane Cl Kabir Chaturvedi, ¹ Zuoming Deng, ¹ Valentina Di Francesco, ¹ Patrick Dunn, ¹ Karen Eilbec Carlos Evangelista, Andrei E. Gabrielian, Weiniu Gan, Wangmao Ge, Fangcheng Gong, Zhij Ping Guan, 1 Thomas J. Heiman, 1 Maureen E. Higgins, 1 Rui-Ru Ji, 1 Zhaoxi Ke, 1 Karen A. Ketcl Zhongwu Lai,1 Yiding Lei,1 Zhenya Li,1 Jiayin Li,1 Yong Liang,1 Xiaoying Lin,1 Fu Lu,1 Gennady V. Merkulov, 1 Natalia Milshina, 1 Helen M. Moore, 1 Ashwinikumar K Naik, 1 Vaibhav A. Narayan, Beena Neelam, Deborah Nusskern, Douglas B. Rusch, Steven Salzb Wei Shao, 1 Bixiong Shue, 1 Jingtao Sun, 1 Zhen Yuan Wang, 1 Aihui Wang, 1 Xin Wang, 1 Jian V

Ming-Hui Wei, Ron Wides, Chunlin Xiao, Chunhua Yan, Alison Yao, Jane Ye, Ming Zl Weiqing Zhang, 1 Hongyu Zhang, 1 Qi Zhao, 1 Liansheng Zheng, 1 Fei Zhong, 1 Wenyan Zhon Shiaoping C. Zhu, Shaying Zhao, Dennis Gilbert, Suzanna Baumhueter, Gene Spier,

Human Genome Project 16/02/2001

Initial sequencing and analysis of the human genoma

A partial list of authors appears on the opposite pa

The human genome holds an extraordina Here we report the results of an internati genome. We also present an initial analy-

The rediscovery of Mendel's laws of heredity the 20th centuryi-3 sparked a scientific quature and content of genetic informati-biology for the last hundred years. The sc falls naturally into four main phases, corres four quarters of the century. The first establis heredity: the chromosomes. The second defi of heredity: the DNA double helix. The third tional basis of heredity, with the discovery of ism by which cells read the information cont the invention of the recombinant DNA tech sequencing by which scientists can do the s

The last quarter of a century has been mar to decipher first genes and then entire genoof genomics. The fruits of this work alread sequences of 599 viruses and viroids, 20 plasmids, 185 organelles, 31 eubacteria ungus, two animals and one plant.

Here we report the results of a collaborati from the United States, the United Kir Germany and China to produce a draft s genome. The draft genome sequence was ge map covering more than 96% of the euchror genome and, together with additional seque covers about 94% of the human genor produced over a relatively short period, will bout 10% to more than 90% over rough equence data have been made available apdated daily throughout the project. The ta finished sequence, by closing all gaps and re Already about one billion bases are in finbringing the vast majority of the sequence

traightforward and should proceed rapidly The sequence of the human genome espects. It is the largest genome to be exbeing 25 times as large as any previously eight times as large as the sum of all such vertebrate genome to be extensively seque the genome of our own species.

Much work remains to be done to pro-sequence, but the vast trove of inform available through this collaborative effort all on the human genome. Although the det sequence is finished, many points are alread • The genomic landscape shows marked vation of a number of features, includir elements, GC content, CpG islands and re gives us important clues about function. opmentally important HOX gene clusters a

Genome Sequencing Centres (Listed in order of total genomic sequence contributed, with a partial list of personnel. A full list of contributors at each centre is available as Supplementary

Whitehead Institute for Biomedical Research, Center for Genome Research: Eric S. Lander¹*, Lauren M. Linton¹, Bruce Birren¹*, Chad Nusbaum1*, Michael C. Zody1*, Jennifer Baldwin1 Keri Devon1, Ken Dewar1, Michael Dovle1, William FitzHuph Roel Funke', Diane Gage', Katrina Harris', Andrew Heaford' John Howland¹, Lisa Kann¹, Jessica Lehoczky¹, Rosie LeVine Paul McEwan¹, Kevin McKernan¹, James Meldrim¹, Jill P. Mesirov Cher Miranda¹, William Morris¹, Jerome Navlor Christina Raymond¹, Mark Rosetti¹, Ralph Santos¹ Andrew Sheridan¹, Carrie Sougnez¹, Nicole Stange-Thomann¹ Nikola Stojanovic1, Arayind Suhramanian

The Sanger Centre: Jane Rogers², John Sulston², Rachael Ainscough², Stephan Beck², David Bentley², John Burton², Christopher Clee², Nigel Carter², Alan Coulson², Rebecca Deadman², Panos Deloukas², Andrew Dunham² neuecca beadman; ranos belousas; andrew Duman; .

Ian Dunham', Richard Durbin', Lisa French', Darren Grafham',
Simon Gregory', Tim Hubbard'', Sea Humphray', Adrienne Hunt;
Matthew Jones', Christine Lloyd', Amanda McMurray',
Lucy Matthews', Simon Mercer', Sarah Miller', James C. Mullikin'',
Andrew Mungalf', Robert Plumin', Mark Ross', Ratina Shownkeen',
Andrew Mungalf', Robert Plumin', Mark Ross', Ratina Shownkeen'

Washington University Genome Sequencing Center: Robert H. Waterston3*, Richard K. Wilson3, LaDeana W. Hillier3 John D. McPherson³, Marco A. Marra³, Elaine R. Mardis³, Lucinda A. Fulton³, Asif T. Chinwalla³, Kymberlie H. Pepin³. Warren R. Gish³, Stephanie L. Chissoe³, Michael C. Wendl Kim D. Delehaunty³ Tracie I. Miner³ Andrew Delehaunty³ Jason B. Kramer³, Lisa L. Cook³, Robert S. Fulton Douglas L. Johnson³, Patrick J. Minx³ & Sandra W. Clifton

US DOE Joint Genome Institute: Trevor Hawkins Elbert Branscomb4, Paul Predki4, Paul Richardson4 Sarah Wenning⁴, Tom Slezak⁴, Norman Doggett⁴, Jan-Fang Cheng⁴, Anne Olsen4, Susan Lucas4, Christopher Elkin4, Edward Uberbacher⁴ & Marvin Frazier

Baylor College of Medicine Human Genome Sequencing Center: Richard A. Gibbs⁵*, Donna M. Muzny⁵, Steven E. Scherer⁵. John B. Bouck⁵*, Erica J. Sodergren⁵, Kim C. Worley⁵*, Catherine M. Rives⁵, James H. Gorrell⁵, Michael L. Metzker Susan L. Naylor⁶, Raju S. Kucherlapati⁷, David L. Nelson, & George M. Weinstock

RIKEN Genomic Sciences Center: Yoshiyuki Sakaki⁹ Asao Fujiyama⁹, Masahira Hattori⁹, Tetsushi Yada⁹, Atsushi Toyoda⁹, Takehiko Itoh⁹, Chiharu Kawago Hidemi Watanabe9, Yasushi Totoki9 & Todd Taylo

Genoscope and CNRS UMR-8030: Jean Weissenbach¹ Roland Heilig¹⁰, William Saurin¹⁰, Francois Artiguenave¹⁰ Philippe Brottier¹⁰, Thomas Bruls¹⁰, Eric Pelletier¹⁰, Catherine Robert¹⁰ & Patrick Wincker

GTC Sequencing Center: Douglas R. Smith¹ Lynn Doucette-Stamm11, Marc Rubenfield11, Keith Weinstock11

Department of Genome Analysis, Institute of Molecular

Biotechnology: André Rosenthal 12

Biology: Leroy Hood16, Lee Rowen16

Nancy A. Federspiel17, A. Pia Abola

& David R. Cox18

Raiinder Kaul 19 & Christopher Raymo

Medicine: Nobuyoshi Shimizu²⁰, Kazu

Glen A. Evans²¹†, Maria Athanasiou²

Technology: Bruce A. Roe²², Feng Che

Cold Spring Harbor Laboratory, Lita A Center: W. Richard McCombie²⁴, Melis

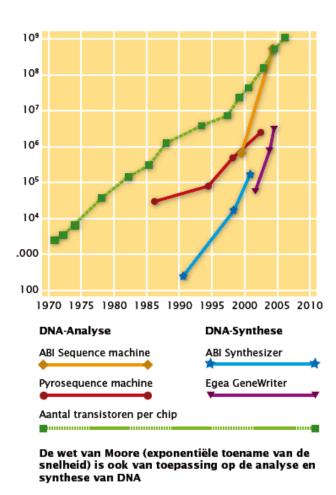
GBF-German Research Centre for B Helmut Blöcker²⁵, Klaus Hornische

Genome Analysis Group (listed in al includes individuals listed under other Richa Agarwala26, L. Aravind26, Jeffrey Serafim Batzoglou¹, Ewan Birney²⁸, Pee Christopher B. Burge³¹, Lorenzo Cerutti Deanna Church²⁶, Michele Clamp², Rick Tobias Doerks^{29,30}, Sean R, Eddy³², Evan

Terrence S. Furey³³, James Galagan¹, James G. R. Gilbert Cyrus Harmon³⁴, Yoshihide Hayashizaki³⁵, David Haussle Cyrus Harmon", Yoshinde Hayashizaki", David Haussler", Henning Hernjakob", Karsten Hokampi", Wonhee Jang⁶⁶ L Steven Johnson¹², Thomas A, Jones²², Simon Kasi¹³a, Arek Kaspryki²⁶, Scot Kennedy¹⁶, W. James Kent⁴⁶, Paul Kitts²⁶, Eugene V. Koonin²⁸, Ian Kort², David Kulp²⁶, Doron Lancet⁴⁷, Todd M. Lower, Aoife McLysaght¹¹, Tarjej Mikkelsen²¹, John V. Moran⁴, Nicola Mulder²⁰, Victor J. Pollara¹, Chris P. Ponting⁴¹, Greg Schuler²⁶, Jörg Schultz²⁰, Guy Slater² Arian F. A. Smit⁴⁰, Elia Stupka²⁰, Joseph Szustakowki²⁰, Danielle Thierry-Mieg²⁶, Jean Thierry-Mieg²⁶, Lukas Wagne John Wallis³, Raymond Wheeler³⁴, Alan Williams³⁴, Yuri I. Wolf² Kenneth H. Wolfe³⁷, Shiaw-Pyng Yang³ & Ru-Fang Yeh³¹

Scientific management: National Human Genome Researc Institute, US National Institutes of Health: Francis Collins 46 Mark S. Guyer⁴⁶, Jane Peterson⁴⁵, Adam Felsenfeld⁴⁶, & Kris A. Wetterstrand⁴⁵, Office of Science, US Department of Energy: Aristides Patrinos⁴⁷; The Wellcome Trust: Michael J.

NATURE VOL. 409 15 FEBRUARY 2001 | www.matur



AMERICAN ASSOCIATION

Sequencing human genome: 13 years/ 3 miljard dollar

Encoding of the network

Next generation sequencing follows Moore Law

454

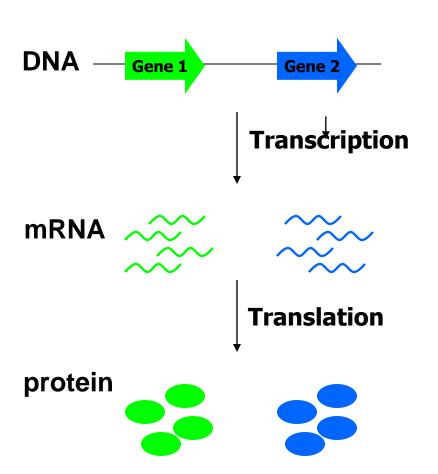
Solid: 50 Gb/run;

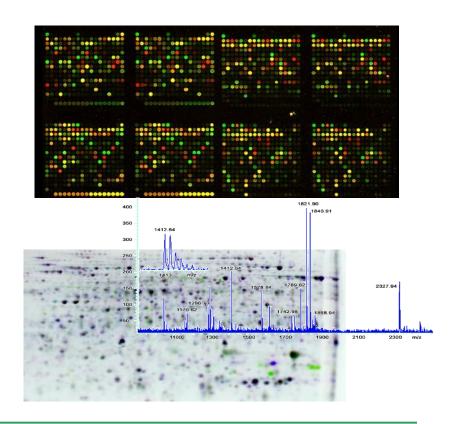
Helicos

Illumina: 25 Gb/run; 75 bp reads

Encoding of the network

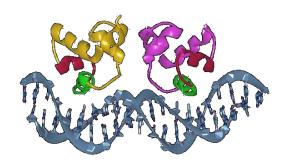
Next generation sequencing technology

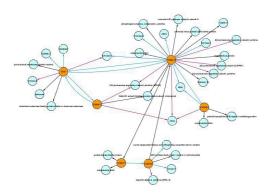

- Sequencing human genome: 13 years/ 3 miljard dollar
- Genome Watson (454 techn): 20 persons/2 months. Totaal 1.000.000 dollar
- Now: 1000 dollar human genome

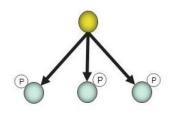


State of the network

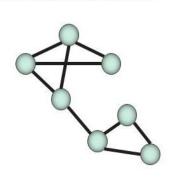
Functional data: transcriptome, proteome, metabolome

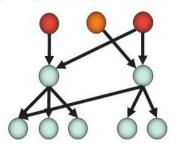




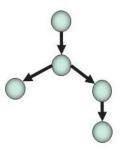

Interactions of the network

Physical data:



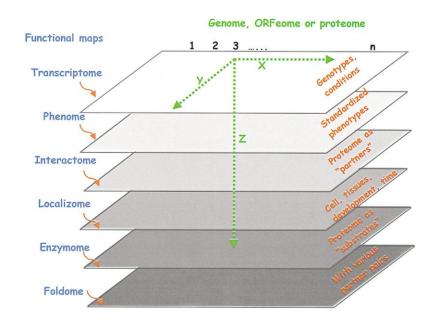

Signaling network

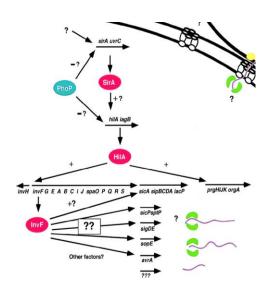
Protein interaction network



(Post)Transcriptional network

PHYSICAL INTERACTION NETWORKS


Metabolic network

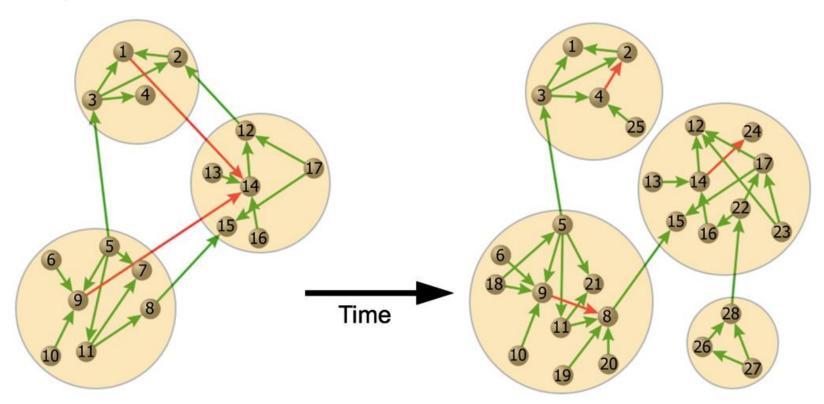


Inferring the network

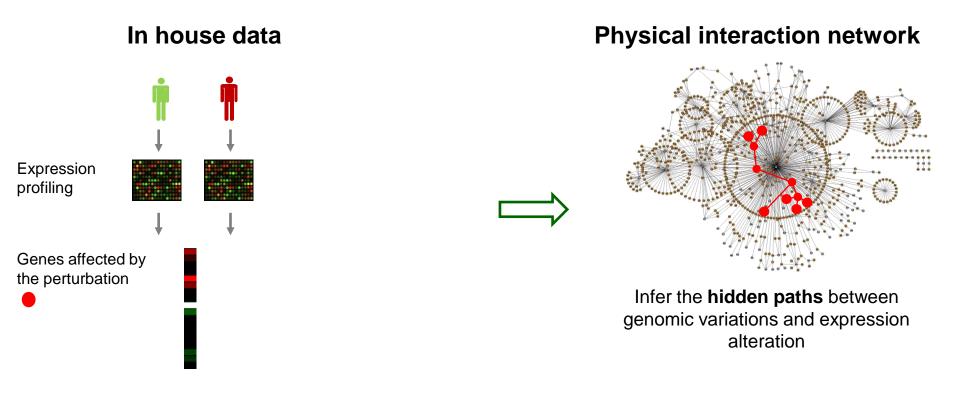
High throughput data

Mechanistic insight in the biological system at molecular biological level (holistic insight)

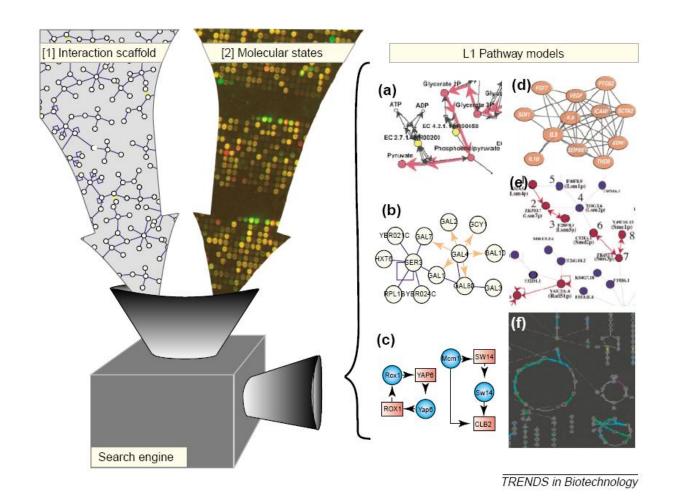
Inferring the network


- Omics data are noisy
- Omics data are incomplete
- Integrate different data to obtain higher precision and coverage
- Reconstruct network
 - Different datasources
 - Different Molecular layers

Fundamental knowledge


Evolution: comparing network between species or over time

Using the network to interpret data

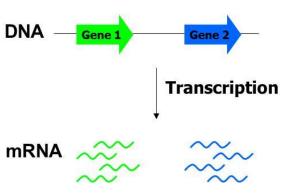


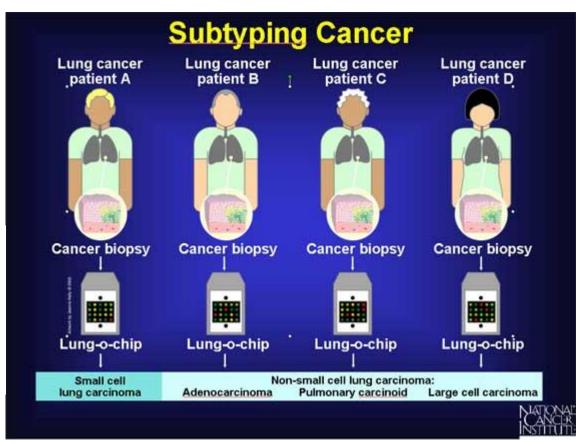
Network-based analysis of unstructured gene lists

Bioinformatics and datamining

Bioinformatics and datamining

What does it require applying a computer science framework to bioinformatics?

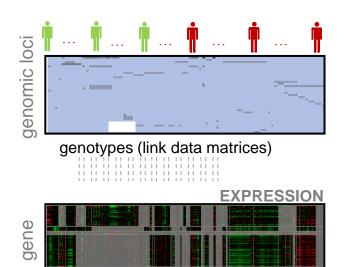

Fast solution


- The wet lab scientist rules
- Competition is fierce
 - Often the high impact papers are the conceptual ones
 - You tackle a research problem for the FIRST time
- Biological message is more imprtant than the method used to analyse the data
 - Code is sloppy , undocumented
 - Unsustainable code /tool development

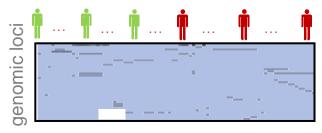
Cancer subtyping & biomarker identification

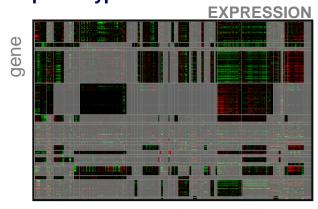


Classification problem



(bi)clustering problem


Dataintegration problem



Cancer subtyping

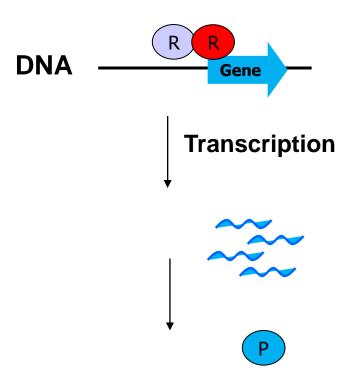
Preprocess the data

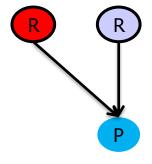
Associate genotypes to phenotype

Dataintegration problem

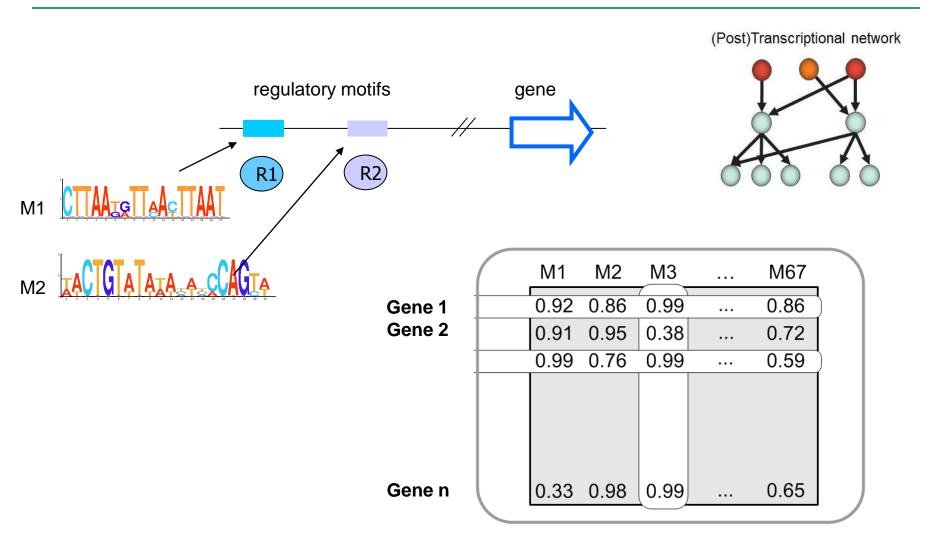
Integrate all data with the interaction network

Infer the interaction network from

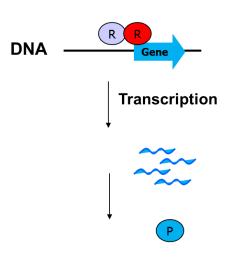

Bioinformatics and datamining

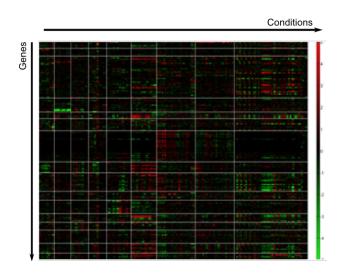

- Problems need a fast solution
- Problems are increasingly complex and can not be solved by one particular datamining tool (generic knowledge needed)
- Datamining in bioinformatics requires a quite thorough understanding of biology
- Problems are underdetermined and ill defined

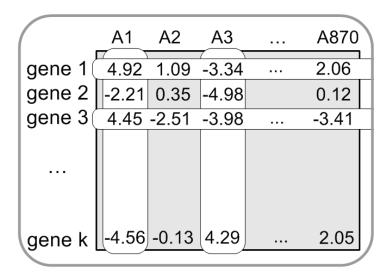
Transcriptional network inference

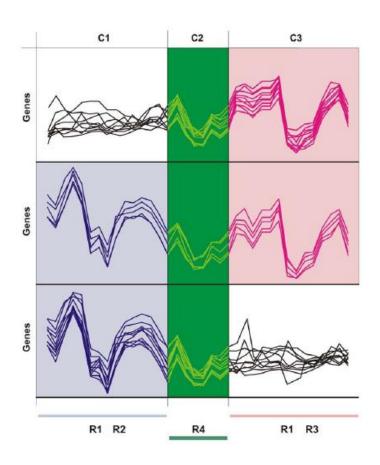


Transcriptional network

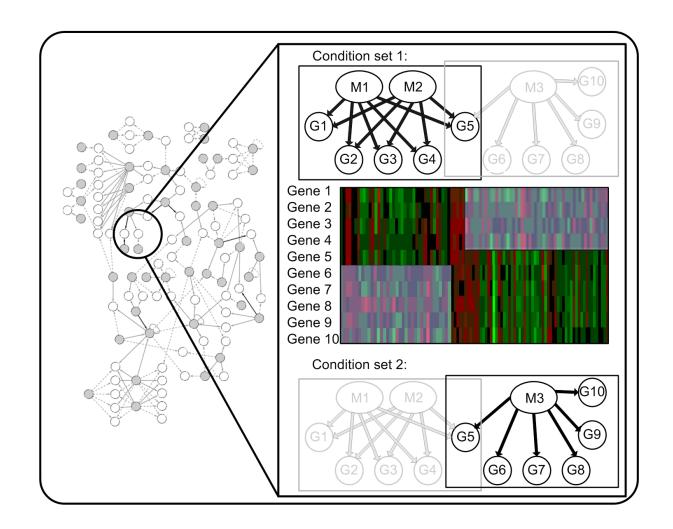








	_A1	A2	A3	 A870
gene 1	4.92	1.09	-3.34	 2.06
gene 2	-2.21	0.35	-4.98	0.12
gene 3	4.45	-2.51	-3.98	 -3.41
gene k	-4.56	-0.13	4.29	 2.05



Guilt by association

Coexpressed target genes are coregulated

DISTILLER

Data Integration System

Lemmens et al. Genome Biol. 2009

To Identify Links in Expression in Expression regulation

Search co expression modules that meet minimal requirements:

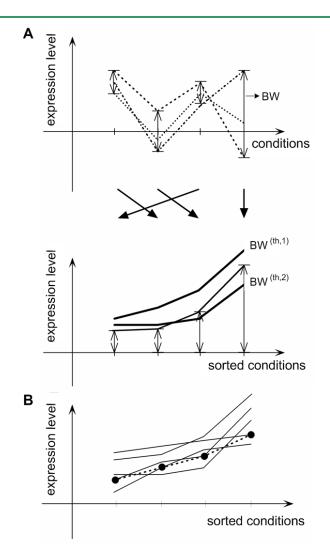
- All genes are significantly co-expressed in a sufficiently large, a priori unspecified set of experimental conditions CC
- All genes contain motif instances for a sufficient number of common, a priori unspecified regulators CR

	A1	A2	A3	 A870		M1	M2	M3	 M67	
gene 1	4.92	1.09	-3.34	 2.06		0.92	0.86	0.99	 0.86	
gene 2	-2.21	0.35	-4.98	0.12		0.91	0.95	0.38	 0.72	
gene 3	4.45	-2.51	-3.98	 -3.41		0.99	0.76	0.99	 0.59	
gene k	-4.56	-0.13	4.29	 2.05		0.33	0.98	0.99	 0.65	

- Items = genes
- Transactions = conditions, motifs

Transact	ions Iten	ns		Itemset 1: G3, G5 supported by 4 motifs					
M1	G1	G3	G5	Itemset 2: G1,G3,G5 supported by 2 motifs					
M2	G3	G5	G9	Tidset $t(G3,G5) = M1, M2, M3, M4$					
МЗ	G3	G5	G11	Tidset $t(G1, G3,G5) = M1, M4$					
M4	G1	G3	G5	Minimal support = 3					
				Itemset G3, G5 is frequent					

Supports:


- All genes in the module (itemsets) are significantly co-expressed in a sufficiently large (minimum support), a priori unspecified set of experimental conditions
- All genes in the module (itemsets) contain motif instances for a sufficient number R (minimum support) of common, a priori unspecified regulators

Expression support
co-expression in a significant
number of experimental
conditions

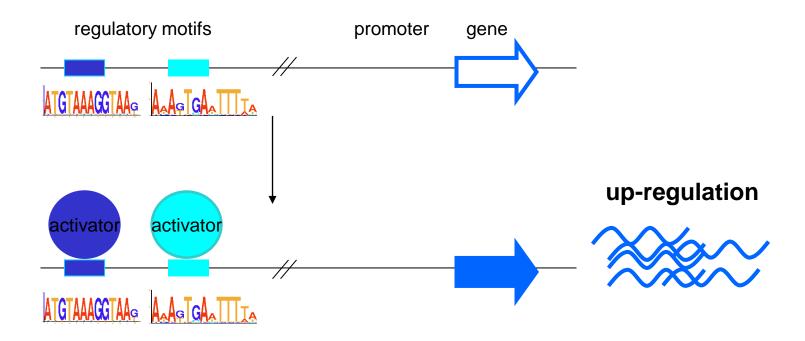
- BW for each condition
- Rank BW in increasing order
- Check if BW sequence is within threshold BW sequence
- BW threshold sequence is determined by randomization

Network inference

Rank modules by assigning interest score

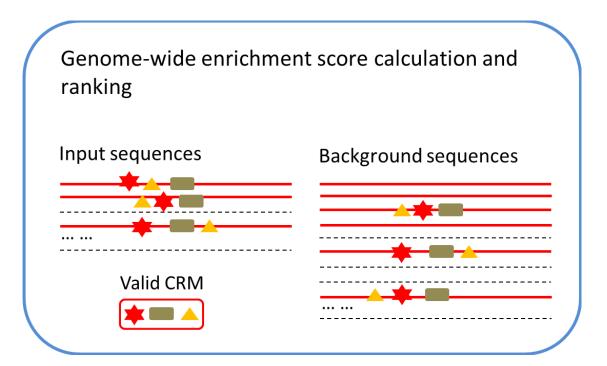
- p(module motif content):
 - The chance that a module with the same number of genes and the same number of motifs is found at random
- p(module expression pattern):
 - The chance that a module with at least the same number of genes and containing the same number of conditions is found by chance

Interest score: p(M|m,g)Xp(M|e,g)



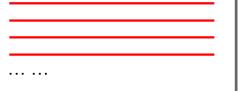
Rank the modules

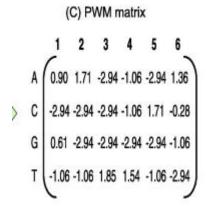
 Modules are selected iteratively such that they add as much as possible new information to the already selected modules

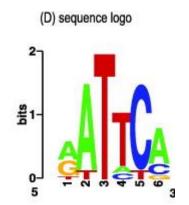


CRM: cis acting regulatory module Combination of TF binding sites

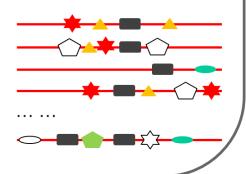
Genes that are needed together in the cell usually are activated together = coregulation

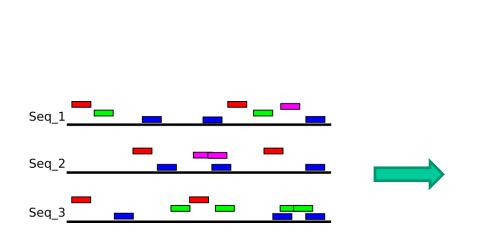





Input:

- 1) TRANSFAC PWM library
- 2) Set of sequences




Motif screening and filtering

- CRM is valid if motifs occur in each others neighbourhood
- Order needs to be conserved?

	m1	m2	m3	 m66
seq 1	0	0	1	 0
seq 2 seq 3	0	1	0	 0
seq 3	1	0	1	 0
seq k	0	1	1	 0

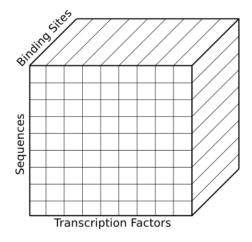
DISTILLER

	Motif_1	Motif_2	Motif_3	Motif_4
Seq_1	(1,10) (65,74)	(12,20) (80,88)	(43,51) (53,61) (90,98)	(72,78)
Seq_2	(33,42) (85,94)		(49,57) (56,64) (91,99)	(50,56) (52,58)
Seq_3	(1,10) (82,91)	(45,53) (58,66) (75,83) (90,88)	(24,32) (72,80) (89,97)	

CPMODULE

Convert screening results in table with (start, stop) positions, for every sequence/motif pair

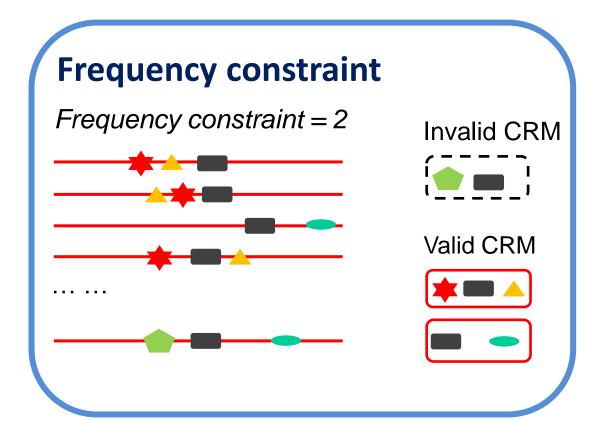
Constraint Programming (CP)


Model (by user):

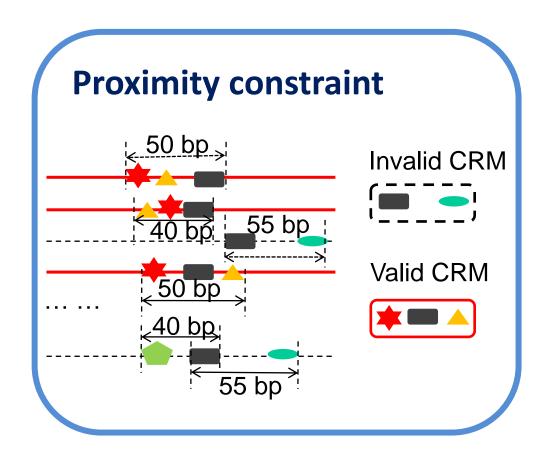
Problem specification in terms of constraints

Search (by solver):

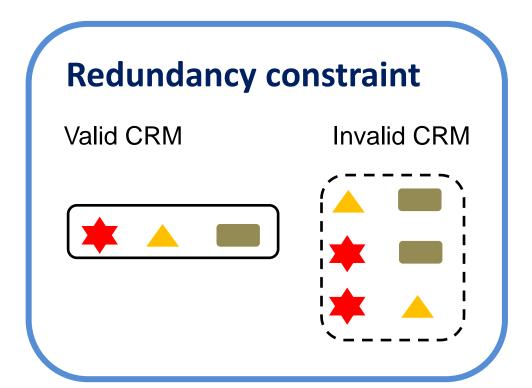
Propagation: in which a constraint is used to remove values from the domain of variables that would violate it


Branching: in which a variable is assigned a value from its domain D(v)

De Raedt et al. 2008 KDD



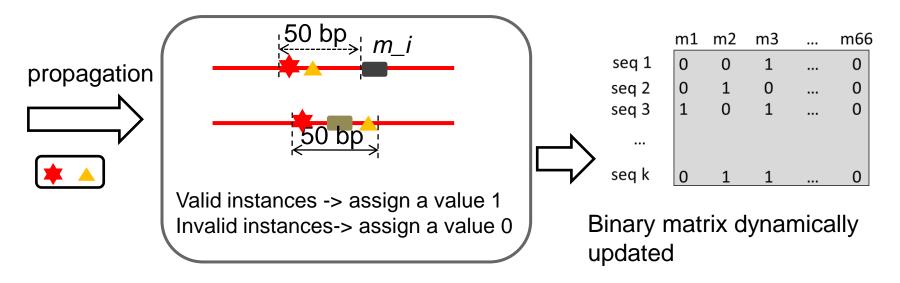
The motif set should occur in a sufficient number of sequences (but not all) to be considered valid (support in itemset mining)



Only motif instances that occur in each others proximity can contribute to a valid motif set (CRM)

When enumerating all motif sets that meet the frequency and proximity constraint many subsets will occur in the same sequences and be composed of the same instances

Only the motif set with more motifs will be retained


Removing redundant motif sets (CRMs) drastically increases the computation time (closeness in itemset mining)

Propagation: using a constraint to remove values from the domain of variables that would violate the constraint

Illustrate with the proximity constraint

Whether motif m_i is in the proximity of the motifs in motifset on sequence j?

Benchmarked on a synthetic dataset

- Xie et al. 2008 (22 sequences)
- 516 TRANSFAC PWMs
- Motifs inserted from 3 known PWMs

A 0.8 0.7 mCC averaged over 10 runs 0.6 cpmodule 0.5 0.4 modulesearcher 0.3 0.2 cister clusterbuster 0 16 116 216 316 516 416 Number of sampled PWMs

CPModule: performances similar to state-of-the-art algorithms on a synthetic dataset

BUT

- Able to deal with much larger sequence sets
- Enumerating all solutions allows it is able to rank the true solution amongst all solution

Guns et al. 2010 BIBM Sun et al. NAR, 2011

Bioinformatics and datamining

Optimal bioinformatics tool

- Right heuristics
- Proper biological assumptions
- Room for experimenting with different assumptions
- Modular code
- Sustainable code
- High performance
- Latest algorithmic developments

Usefulness of declarative framework (Problog, ASP, Constrained based programming)

Acknowledgements

KUL/CMPG

- Ivan Ischukov*
- Hong Sun*
- Valerie Storms*
- Pieter Meysman*
- Kristof Engelen*
- Lore Cloots*
- Peyman Zarrineh*
- Riet De Smet*
- Karen Lemmens*
- Abeer Fadda*

UGENT/KUL/DBN

- Carolina Fierro
- Yan Wu
- Aminael Sanchez
- Marleen Claeys
- Dries De Maeyer
- Sergio Pullido
- Qiang Fu

University of Bristol

Tijl Debie

KUL/Computer science

- Luc De Raedt
- Siegfried Nijssens
- Joris Renkens
- Tias Guns
- Tan Levan

http://bioinformatics.psb.ugent.be/DBN/

