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o 4 Motivation

Dimensionality tells us how difficult our data is to work with (curse

of dimensionality).
» Often misunderstood in terms of representational

dimensionality.
» More appropriately addressed by intrinsic dimensionality.

Why do we care in practice?
» Analysis of cost of fundamental operations in data mining.

» Design of efficient heuristics.
» Support algorithmic decisions made at runtime.

P> .



o Modeling Intrinsic Dimensionality

Counting numbers of features is a simple way to model
dimensionality, but it is often not appropriate.

Different models of intrinsic dimensionality have been proposed:

» Fractal Dimension
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Aspect Ratio
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Covering Dimension
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Disorder Inequalities
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Expansion Dimension (Karger & Ruhl)

Generalized Expansion Dimension (Core Idea)
Look for the dimensionality that best explains the observed density of
data around a reference point.




o Modeling Intrinsic Dimensionality

Key Observation:

> Neighborhood volumes are determined by radii and
dimensionality.

Example: Euclidean space (R™, d).
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o Modeling Intrinsic Dimensionality

General approach:
1. Measure neighborhood volumes and radii.

2. Solve for dimension.

Examples:

» Euclidean: Testing with two neighborhoods yields

AMB(g:n)) _ (n\" . _ logA(B(q,n)) —log A(B(g, r2))
MB(q,r)) (r2> me logri — log r

» Different results for Hamming and vector angle distance.
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o Modeling Intrinsic Dimensionality

Let S C U be a point set. Neighborhood measures are estimated by
numbers of points of S captured.

AB(q,r)) ~|B(q.r)NS| = |m~ log ky—log ky

log rn—log r»
uneven growth e

Uneven growth: Our volume estimates do not grow smoothly (r € R,
but k € N).

» Different choices of r provide different estimations of m.

» We use medians of medians (high stability, different percentiles

are possible, ...).




o Modeling Intrinsic Dimensionality

Algorithm. Dimensionality testing at query location x € U with neighbor-
hood sizes in the range k_, ..., k;.

1. Let Q =(g«_,---,qk, ) be the sorted list of query-distances (of
neighbors ranked between k_ and k).

2. Let K ={k_,..., ki} be the range of considered neighborhood sizes.
For any choice of k € K, let Ay = {(k,i) : i€ K and i # k}.

3. For any k € K let my be the median of the individual tests involving
one neighborhood of size k, that is,

my = median A(B(x, qx), B(x, ¢;)| S, U, D).
(k,i)eAk

4. Report mediankck my as the dimensionality at x.



Modeling Intrinsic Dimensionality

» Visualization of the local intrinsic dimensionality on a perforated

plane in R3:
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& Applications

The Big Picture:

» |If sufficiently many variables are known, we can bound
unknown variables.




cge  Dimensional Pruning for Similarity Search

Dimensional test with neighborhoods

EN

centered at q:
» Outer ball containing k candidates
(di(q) < r2).
> Inner ball tangent to most restrictive
(closest) separator.

Observations:

> Inner ball is part of the solution.

e N\ > If ¢ < 0 we can prune.
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cge  Dimensional Pruning for Similarity Search

» Maximum GED (Anax) at least

log(k + ) — log ki
logrn —logn

» Can safely terminate if

r Amax
k1 <2> <k+1
rn
» Heuristic: Estimate Anax by

sampling and pick a percentile
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Applications

In practice, direct computation of m can be too expensive.

Solution: Estimate order-statistic quantities (percentiles, maxima) of
dimensionality values by sampling reference points.

» Percentiles often correspond to algorithmic performance (recall
rates, ...).
» Estimates concentrate sharply around their true values.
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. Multi-Step Similarity Search

lustering I, 10:40 — 11:00, Room: Salle des Nations | — “Dimensional Testing ]

Cl
[for Multi-Step Similarity Search”, M. E. Houle, X. Ma, M. Nett, and V. Oria

The situation:
» We have a lower-bounding distance d’'(x,y) < d(x,y).

(filtering, feature selection, .. .)

data set

candidate set
query result

refinement

filtering

target distance function

lower-bounding
distance function

» Special case of ranked list aggregation.



. Multi-Step Similarity Search

» Optimal solution assuming no knowledge on future distance
values (Seidl & Kriegel, 1998).

» Potential for early termination:
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VIO =[d’ (x,p)12

Multi-Step Similarity Search

» Put conditions on ¢ being
zero.

» Solution parameterized in t.

» Theoretically guaranteed
correctness if t > Amax.

» Competitive heuristic for
smaller choices of t.
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. Challenges

Concerning the model.
» Other domains (set lattices, scale-free networks, .. .).
» General model of complexity of data.

» Comparison of different models (GED vs. PCA, network scale,

).

Current and future work:
» Dimensional pruning
» Anomaly detection
» Feature selection

» Cost balancing / accuracy balancing
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