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Motivation

Dimensionality tells us how difficult our data is to work with (curse
of dimensionality).

I Often misunderstood in terms of representational
dimensionality.

I More appropriately addressed by intrinsic dimensionality.

Why do we care in practice?

I Analysis of cost of fundamental operations in data mining.

I Design of efficient heuristics.

I Support algorithmic decisions made at runtime.
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Modeling Intrinsic Dimensionality

Counting numbers of features is a simple way to model
dimensionality, but it is often not appropriate.

Different models of intrinsic dimensionality have been proposed:

I Fractal Dimension

I Aspect Ratio

I Covering Dimension

I Disorder Inequalities

I Expansion Dimension (Karger & Ruhl)

Generalized Expansion Dimension (Core Idea)
Look for the dimensionality that best explains the observed density of
data around a reference point.
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Modeling Intrinsic Dimensionality

Key Observation:

I Neighborhood volumes are determined by radii and
dimensionality.

Example: Euclidean space (Rm, d).

λ(B(q, r)) = rm · π
m
2

Γ(m2 + 1)
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Modeling Intrinsic Dimensionality

General approach:

1. Measure neighborhood volumes and radii.

2. Solve for dimension.

Examples:

I Euclidean: Testing with two neighborhoods yields

λ(B(q, r1))

λ(B(q, r2))
=

(
r1
r2

)m

⇔m =
log λ(B(q, r1))− log λ(B(q, r2))

log r1 − log r2

I Different results for Hamming and vector angle distance.
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Modeling Intrinsic Dimensionality

Let S ⊆ U be a point set. Neighborhood measures are estimated by
numbers of points of S captured.

λ(B(q, r)) ∼ |B(q, r) ∩ S | ⇒ m ∼ log k1−log k2
log r1−log r2

locality aware

uneven growth

Uneven growth: Our volume estimates do not grow smoothly (r ∈ R,
but k ∈ N).

I Different choices of r provide different estimations of m.

I We use medians of medians (high stability, different percentiles
are possible, . . . ).
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Modeling Intrinsic Dimensionality

Algorithm. Dimensionality testing at query location x ∈ U with neighbor-

hood sizes in the range k−, . . . , k+.

1. Let Q = (qk− , . . . , qk+ ) be the sorted list of query-distances (of
neighbors ranked between k− and k+).

2. Let K = {k−, . . . , k+} be the range of considered neighborhood sizes.
For any choice of k ∈ K , let Ak , { (k , i) : i ∈ K and i 6= k} .

3. For any k ∈ K let mk be the median of the individual tests involving
one neighborhood of size k , that is,

mk = median
(k,i)∈Ak

∆(B(x , qk),B(x , qi )|S ,U,D).

4. Report mediank∈K mk as the dimensionality at x .
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Modeling Intrinsic Dimensionality

I Visualization of the local intrinsic dimensionality on a perforated
plane in R3:
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Applications

The Big Picture:

I If sufficiently many variables are known, we can bound
unknown variables.

Dimensionality

m

Distances

r1 r2

Rankings

k1 k2

GED
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Dimensional Pruning for Similarity Search

r1

r 2

q

k1

k

ε
ε

ε

ε

Dimensional test with neighborhoods
centered at q:

I Outer ball containing k candidates
(dk(q) ≤ r2).

I Inner ball tangent to most restrictive
(closest) separator.

Observations:

I Inner ball is part of the solution.

I If ε < 0 we can prune.
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Dimensional Pruning for Similarity Search

r1

r 2

q

k1

k

ε
ε

ε

ε

I Maximum GED (∆max) at least

log(k + ε)− log k1

log r2 − log r1

I Can safely terminate if

k1

(
r2
r1

)∆max

< k + 1

I Heuristic: Estimate ∆max by
sampling and pick a percentile.
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Applications

In practice, direct computation of m can be too expensive.

Solution: Estimate order-statistic quantities (percentiles, maxima) of
dimensionality values by sampling reference points.

I Percentiles often correspond to algorithmic performance (recall
rates, . . . ).

I Estimates concentrate sharply around their true values.
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Multi-Step Similarity Search

Clustering II, 10:40 – 11:00, Room: Salle des Nations I — “Dimensional Testing

for Multi-Step Similarity Search”, M. E. Houle, X. Ma, M. Nett, and V. Oria

The situation:

I We have a lower-bounding distance d ′(x , y) ≤ d(x , y).
(filtering, feature selection, . . . )

I Special case of ranked list aggregation.
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Multi-Step Similarity Search

I Optimal solution assuming no knowledge on future distance
values (Seidl & Kriegel, 1998).

I Potential for early termination:

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

1 20 40 60 80E
x
a
c
t 
a
n
d
 l
o
w

e
r-

b
o
u
n
d
in

g
 d

is
ta

n
c
e

Ranking according to lower-bounding distance

Lower-bounding distance
Exact distance

15/18



Multi-Step Similarity Search
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I Put conditions on ε being
zero.

I Solution parameterized in t.

I Theoretically guaranteed
correctness if t ≥ ∆max.

I Competitive heuristic for
smaller choices of t.
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I M. E. Houle and M. Nett, “Rank-Based Similarity Search:
Reducing the Dimensional Dependence”, Tech. Rep.
NII-2012-004E.

I M. E. Houle, S. Chawla, and T. deVries, “Finding Local
Anomalies in Very High Dimensional Space”, ICDM 2010.

I M. E. Houle, X. Ma, M. Nett, and V. Oria, “Dimensional
Testing for Multi-Step Similarity Search”, ICDM 2012.
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Challenges

Concerning the model.

I Other domains (set lattices, scale-free networks, . . . ).

I General model of complexity of data.

I Comparison of different models (GED vs. PCA, network scale,
. . . ).

Current and future work:

I Dimensional pruning

I Anomaly detection

I Feature selection

I Cost balancing / accuracy balancing
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