A Scalable Two-Stage Approach for a Class of Dimensionality Reduction Techniques

Liang Sun, Betul Ceran and Jieping Ye Computer Science & Engineering The Biodesign Institute Arizona State University

High-Dimensional Data is Ubiquitous

Linear Dimensionality Reduction

Why Dimensionality Reduction?

- Most data mining algorithms may not be effective for high-dimensional data.
 - Curse of Dimensionality.
- The intrinsic dimension may be small.
 - For example, the number of genes responsible for a certain type of disease may be small.
- Visualization of the data

Dimensionality Reduction Algorithms

- Unsupervised
 - Latent Semantic Indexing (LSI)
 - Principal Component Analysis (PCA)
 - Manifold learning algorithms
- Supervised
 - Canonical Correlation Analysis (CCA)
 - Partial Least Squares (PLS)
 - Linear Discriminant Analysis (LDA)
 - Hypergraph Spectral Learning (HSL)
- Semi-supervised

Dimensionality Reduction Algorithms

- Many DR algorithms reduce to solving a generalized eigenvalue problem (GEP).
- We focus on algorithms in the form of the following GEP:

 $\mathbf{X}\mathbf{S}\mathbf{X}^{\mathrm{T}}\mathbf{w} = \lambda\mathbf{X}\mathbf{X}^{\mathrm{T}}\mathbf{w}$

• GEP Example dimensionality reduction algorithms: Canonical Correlation Analysis (CCA) Orthonormalized Partial Least Squares (OPLS)

In su
 Hypergraph Spectral Learning (HSL)
 Linear Discriminant Analysis (LDA)
 Iabel Information.

n the

Key Challenge: How to Solve the GEP Efficiently?

- Existing algorithms do not scale to large-size problems.
 - Algorithms solving the GEP in numerical linear algebra is generally computationally expensive.
- An equivalent least squares formulation for this class of GEP was proposed [Sun *et al.* ICML 09]
 - The equivalence is established under a strong assumption.
 - The equivalence only holds for the unregularized case.

Main Contributions

- We proposed a two-stage approach for a class of dimensionality reduction techniques including CCA, OPLS, HSL and LDA.
 - No assumption is required for establishing the equivalence relationship.
 - The equivalence relationship can be extended to the **regularization setting**.
 - The two-stage approach scales to large-size problems.

Outline

- Overview of Dimensionality Reduction Algorithms
 - Canonical Correlation Analysis (CCA)
 - Orthonormalized Partial Least Squares (OPLS)
 - Hypergraph Spectral Learning (HSL)
 - Linear Discriminant Analysis (LDA)
- The Proposed Two-Stage Approach
 - The main procedure
 - Equivalence relationship
 - Time complexity analysis
- Empirical Evaluation
- Conclusions

$\mathbf{X}\mathbf{Y}^{\mathrm{T}}(\mathbf{Y}\mathbf{Y}^{\mathrm{T}})^{-1}\mathbf{Y}\mathbf{X}^{\mathrm{T}}\mathbf{w}_{\mathrm{x}} = \lambda\mathbf{X}\mathbf{X}^{\mathrm{T}}\mathbf{w}_{\mathrm{x}}$ $\mathbf{S} = \mathbf{Y}^{\mathrm{T}}(\mathbf{Y}\mathbf{Y}^{\mathrm{T}})^{-1}\mathbf{Y} = \mathbf{H}\mathbf{H}^{\mathrm{T}}, \mathbf{H} = \mathbf{Y}^{\mathrm{T}}(\mathbf{Y}\mathbf{Y}^{\mathrm{T}})^{-1/2}$

$$\mathbf{X}\mathbf{Y}^{\mathrm{T}}\mathbf{Y}\mathbf{X}^{\mathrm{T}}\mathbf{w}_{\mathrm{x}} = \lambda\mathbf{X}\mathbf{X}^{\mathrm{T}}\mathbf{w}_{\mathrm{x}},$$
$$\mathbf{S} = \mathbf{Y}^{\mathrm{T}}\mathbf{Y} = \mathbf{H}\mathbf{H}^{\mathrm{T}}, \mathbf{H} = \mathbf{Y}^{\mathrm{T}}$$

Hypergraph Laplacian

Hypergraph Spectral Learning

- HSL is a dimensionality reduction technique for multi-label classification.
- By capturing the correlation among different labels using hypergraph, HSL learns a low-dimensional embedding through a linear transformation W:

Linear Discriminant Analysis

- LDA attempts to minimize the within-class variance while maximizing the between-class variance after the linear projection.
- The optimal linear projection consists of the top eigenvectors of $S_t^{\dagger}S_b$, where S_t is the total covariance matrix and S_b is the between-class covariance matrix.

$$\mathbf{S}_{t}^{\dagger} \mathbf{S}_{b} = (\mathbf{X}\mathbf{X}^{T})^{\dagger} (\mathbf{X}\mathbf{S}\mathbf{X}^{T})$$
$$\mathbf{S} = \mathbf{H}\mathbf{H}^{T}, \quad \mathbf{H} = \operatorname{diag} \left(\frac{1}{\sqrt{n_{1}}} \mathbf{1}_{1}, \frac{1}{\sqrt{n_{2}}} \mathbf{1}_{2}, \cdots, \frac{1}{\sqrt{n_{k}}} \mathbf{1}_{k} \right) \in \mathbb{R}^{n \times k}$$

Overview of the Two-Stage Approach

The Two-Stage Approach without Regularization

In the second stage, we replace Algorithm 1 The Two-Stage App X in the original GEP with the ization intermediate data, and solve a Input: X, H GEP (or optimization problem) of a reduced size. Output: W **Stage 1:** Solve the following least sq problem: $\min_{\mathbf{W}_1} \|\mathbf{W}_1^T \mathbf{X} - \mathbf{H}^T\|_F^2.$ (10)**Stage 2:** Compute $\tilde{\mathbf{X}} = \mathbf{W}_1^T \mathbf{X}$, and so e the following optimization problem: $\operatorname{Tr}(\mathbf{W}_{2}^{T}\tilde{\mathbf{X}}\mathbf{H}\mathbf{H}^{T}\tilde{\mathbf{X}}^{T}\mathbf{W}_{2})$ (11)max \mathbf{W}_2 $\mathbf{W}_{2}^{T}\tilde{\mathbf{X}}\tilde{\mathbf{X}}^{T}\mathbf{W}_{2}=\mathbf{I}_{\ell}.$ s.t. Compute $\mathbf{W} = \mathbf{W}_1 \mathbf{W}_2$ as the final solution.

The Two-Stage Approach without Regularization

- In the first stage, H^T can be considered as the "latent target" encoded by the label information in Y.
- Advantages of using LSQR to solve least squares in the first stage:
 - Good scalability.
 - Reliable for even ill-conditioned problems.
- In the second stage, we project the data matrix
 X onto a subspace, and solve the resulting generalized eigenvalue problem of a reduced size.

Time Complexity Analysis

Algorithm 1 The Tw ization Input: X, H	The total comp O(<i>Nk</i> (3 <i>n</i> +5 <i>d</i> +2 where <i>N</i> is the number of non:	utational cost of <i>z</i>)) using LSQR v total number of i zero entries in X .	the first stage is when X is sparse, terations, <i>z</i> is the		
Output: W Stage 1: Solve the	e fo ^p mg leas	st squares prol	blem:		
$\min_{\mathbf{W}_1}$	$\min_{\mathbf{W}_1} \ \mathbf{W}_1^T \mathbf{X} - \mathbf{H}^T $ The cost of the second stage $O(kz+nk^2)$.				
Stage 2: Compute $\tilde{\mathbf{X}} = \mathbf{W}_1^T \mathbf{X}$, and the following optimization problem:					
The total compu 2 <i>z</i>) + <i>kz</i> + <i>n</i>	itational cost is (<i>k</i> ² + <i>dk</i> ²) when X	D(<i>Nk</i> (3 <i>n</i> + 5 <i>d</i> + (is sparse.	(11)		
$\mathrm{s.t.}$	$\mathbf{W}_2^T ilde{\mathbf{X}} ilde{\mathbf{X}}^T \mathbf{W}_2$	^{2 -} results in two	f combining the stages is O(<i>dk</i> ²)		
Compute $\mathbf{W} = \mathbf{W}_1 \mathbf{W}_2$ as the final solution.					

Equivalence without Regularization

THEOREM 1. The top ℓ ($\ell \leq \operatorname{rank}(\mathbf{A})$) projection vectors computed by Eq. (11) are given by

$$\mathbf{W}_2 = \left(\mathbf{U}_A \boldsymbol{\Sigma}_A^{-1}\right)_{\ell},\tag{22}$$

where $(\mathbf{U}_A \boldsymbol{\Sigma}_A^{-1})_{\ell}$ consists of the first ℓ columns of $(\mathbf{U}_A \boldsymbol{\Sigma}_A^{-1})$. Thus, the projection vectors computed by the two-stage approach are

$$\mathbf{W} = \mathbf{W}_1 \mathbf{W}_2 = \mathbf{U}_1 \boldsymbol{\Sigma}_1^{-1} \mathbf{V}_{A\ell} \tag{23}$$

THEOREM 2. The eigenvectors corresponding to the top $\ell \ (\ell \leq \operatorname{rank}(\mathbf{A})) \ eigenvalues \ of \ (\mathbf{X}\mathbf{X}^T)^{\dagger}(\mathbf{X}\mathbf{H}\mathbf{H}^T\mathbf{X}^T) \ are$ $\mathbf{W}_0 = \mathbf{U}_1 \boldsymbol{\Sigma}_1^{-1} \mathbf{V}_{A\ell},$ (26)

where $V_{A\ell}$ consists of the first ℓ columns of V_A . Thus, the two-stage approach produces the same solution as the direct approach which solves the original generalized eigenvalue problem directly.

The Two-Stage Approach with Regularization

- The two-stage approach can be extended to the regularization setting
 - A penalized least squares problem using the same target is solved in the first stage.
 - The equivalence relationship can also be rigorously established

A significant improvement of existing work

• The computational cost of the two-stage approach in the regularization setting is the same as the unregularized one.

Empirical Evaluation

- Goals:
 - To verify the equivalence relationship between the direct approach and the two-stage approach.
 - To demonstrate the scalability of the two-stage approach.
- Setup
 - All experiments are performed on a PC with Intel Core 2 Duo T9500 2.6G CPU and 4GB RAM.
 - Synthetic data are generated using the Gaussian distribution.
 - To verify the equivalence relationship, we compare $||W_0W_0^T WW^T||_2$ under different values of the regularization parameter γ .

Data Description

Table 1: Statistics of the data sets: n is the number of samples, d is the data dimensionality, and k is the number of labels (classes).

Data Set	Type	n	d	k
Syn1	Multi-class	1000	100	5
Syn2	Multi-class	1000	5000	5
Syn3	Multi-label	1000	100	5
Syn4	Multi-label	1000	5000	5
Ionosphere	Multi-class	351	34	2
Optical digits	Multi-class	5620	64	10
Satimage	Multi-class	6435	36	6
USPS	Multi-class	9298	256	10
Wine	Multi-class	178	13	3
Scene	Multi-label	2407	294	6
Yeast	Multi-label	2417	103	14
news20	Multi-class	15935	62061	20
rcv1v2	Multi-label	3000	47236	101

AUC Comparison on the Yeast Data Set

- Sample size n = 2417, dimensionality d=103, number of labels k=14.
- Regularization parameter γ = 1e-6 ~ 1e6.

Scalability Comparison on the rcv1v2 Data Set (1)

- Sample size n=500:500:3000.
- Dimensionality d=5000.
- Number of labels k=101.

Scalability Comparison on the rcv1v2 Data Set (2)

- Sample size n=3000.
- Dimensionality d=500:500:5000.
- Number of labels k=101.

Conclusions and Future Work

- Establish the two-stage approach for a class of dimensionality reduction techniques including CCA, OPLS, LDA, and HSL.
 - The equivalence relationship is rigorously proved.
 - Advantages of the two-stage approach:
 - No assumption is required.
 - It can be applied in the regularization setting.
 - Good scalability.
- Future Work
 - Extend the two-stage approach to other algorithms similar to the GEP formulation.
 - Online algorithm for the two-stage approach.

Thank you!

Equivalence Verification

Data	Technique	0	1.0e-006	1.0e-004	1.0e-002	1.0e+000	1.0e+002	1.0e+004	1.0e+006
Syn1	LDA	2.9e-018	3.6e-018	3.4e-018	3.1e-018	2.6e-018	2.5e-018	3.1e-019	3.0e-021
Syn2	LDA	5.8e-019	1.4e-018	1.2e-018	8.9e-019	1.2e-018	9.9e-019	2.3e-019	2.9e-021
Syn3	CCA	4.9e-018	8.4e-018	7.0e-018	6.5e-018	9.5e-018	6.0e-018	5.1e-019	7.2e-021
	OPLS	4.6e-018	5.0e-018	8.7e-018	5.0e-018	6.6e-018	6.1e-018	5.4e-019	5.0e-021
	HSL-Clique	1.0e-017	1.8e-017	1.2e-017	1.2e-017	1.5e-017	1.4e-017	2.9e-018	2.5e-020
	HSL-Star	1.4e-017	2.4e-017	9.3e-018	2.6e-017	2.1e-017	5.0e-017	9.8e-019	1.3e-020
Syn4	CCA	1.3e-018	5.2e-018	3.2e-018	1.8e-018	1.3e-018	1.8e-018	4.2e-019	5.9e-021
	OPLS	1.0e-018	1.1e-018	1.3e-018	1.5e-018	1.3e-018	1.3e-018	2.9e-019	5.9e-021
	HSL-Clique	2.7e-018	2.9e-018	2.7e-018	5.0e-018	3.2e-018	2.7e-018	8.9e-019	1.4e-020
	HSL-Star	2.5e-018	3.7e-018	2.9e-018	5.7 e-018	4.1e-018	2.9e-018	1.1e-018	3.1e-020
Scene	CCA	2.4e-015	2.1e-015	6.1e-015	3.7e-015	1.2e-015	1.8e-016	6.0e-018	9.0e-020
	OPLS	2.0e-015	3.4e-015	3.8e-015	2.5e-015	1.1e-015	2.3e-016	1.1e-017	1.4e-019
	HSL-Clique	4.5e-015	9.1e-015	2.6e-014	1.2e-014	3.6e-015	1.3e-015	5.9e-017	1.0e-018
	HSL-Star	4.6e-015	3.3e-014	2.1e-014	7.7e-015	1.1e-014	2.5e-016	1.0e-016	6.5e-019
Yeast	CCA	1.6e-012	1.5e-011	1.2e-012	1.4e-015	6.9e-016	5.9e-017	1.7e-018	1.4e-020
	OPLS	4.1e-012	1.6e-011	3.7e-012	1.2e-014	1.5e-015	3.7e-016	3.2e-018	2.9e-020
	HSL-Clique	1.5e-012	1.4e-011	3.7e-012	3.9e-015	1.6e-015	2.7e-016	5.1e-018	2.5e-020
	HSL-Star	2.1e-012	1.0e-011	2.4e-012	1.1e-014	9.4 e-015	1.1e-015	1.5e-017	4.4e-019
Wine	LDA	5.9e-017	2.1e-016	2.3e-016	2.1e-016	3.2e-017	2.2e-018	1.3e-020	2.0e-020
Satimage	LDA	4.6e-016	2.2e-015	8.4e-016	7.3e-016	7.7e-016	8.1e-017	3.9e-017	6.2e-019
Ionosphere	LDA	8.5e-018	1.0e-017	4.3e-018	2.1e-017	6.8e-018	6.6e-018	6.6e-020	1.1e-021
Optical digits	LDA	6.2e-018	7.2e-018	6.7 e-018	5.7 e-018	1.9e-018	1.5e-019	5.9e-020	5.6e-021
USPS	LDA	7.0e-015	3.0e-014	2.6e-014	6.6e-015	1.1e-016	3.0e-018	4.1e-019	6.6e-021