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Linear Dimensionality Reduction

Data points
>
&
Transformation matrix o7} .. Reduced data

W -1 d = Original data i X' [ x 1

? X:dxn

v
d: dimensionality W can be comput_ed b_y _
h: number of data points optimizing a certain criterion
X'=W'X
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Why Dimensionality Reduction?

e Most data mining algorithms may not be
effective for high-dimensional data.

— Curse of Dimensionality.

e The intrinsic dimension may be small.

— For example, the number of genes responsible for a
certain type of disease may be small.

e Visualization of the data




m BIODESIGN
INSTITUTE

Dimensionality Reduction Algorithms

e Unsupervised
— Latent Semantic Indexing (LSI)
— Principal Component Analysis (PCA)
— Manifold learning algorithms

e Supervised
— Canonical Correlation Analysis (CCA)
— Partial Least Squares (PLS)
— Linear Discriminant Analysis (LDA)
— Hypergraph Spectral Learning (HSL)

e Semi-supervised
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Dimensionality Reduction Algorithms

 Many DR algorithms reduce to solving a
generalized eigenvalue problem (GEP).

 We focus on algorithms in the form of the
following GEP:

XSX'w = AXX W

Example dimensionality reduction algorithms:
e GEP L Canonical Correlation Analysis (CCA)
UOrthonormalized Partial Least Squares
(OPLS)
UHypergraph Spectral Learning (HSL)
ULinear Discriminant Analysis (LDA)

e Insu N the

label iInformation.
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Key Challenge: How to Solve the
GEP Efficiently?

e EXisting algorithms do not scale to large-size
problems.

— Algorithms solving the GEP in numerical linear algebra
IS generally computationally expensive.

* An equivalent least squares formulation for this
class of GEP was proposed [Sun et al. ICML 09]

— The equivalence is established under a strong
assumption.

— The equivalence only holds for the unregularized case.
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Main Contributions

 We proposed a two-stage approach for a class
of dimensionality reduction techniques including
CCA, OPLS, HSL and LDA.

— No assumption is required for establishing the
equivalence relationship.

— The equivalence relationship can be extended to the
regularization setting.

— The two-stage approach scales to large-size
problems.

8
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Outline

e Overview of Dimensionality Reduction Algorithms

— Canonical Correlation Analysis (CCA)

— Orthonormalized Partial Least Squares (OPLYS)
— Hypergraph Spectral Learning (HSL)

— Linear Discriminant Analysis (LDA)

 The Proposed Two-Stage Approach
— The main procedure
— Equivalence relationship
— Time complexity analysis

« Empirical Evaluation

e Conclusions
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Canonical Correlation Analysis
IXSXTw = AXX W

W.T

maximize
correlation

WT

XYTOYYT)'YXTw, = AXXTw,
S=YT(YYT)'Y =HHT,H=YT(YYT)"
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Orthonormalized PLS
IXSXTw = AXX W

W.T

maximize
covariance

WT

XYTYXTw, = AXX W,
S=YTY=HH",H=YT
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Hypergraph Spectral Learning

« HSL is a dimensionality reduction technique for
multi-label classification.

e By capturing the correlation among different labels
using hypergraph, HSL learns a low-dimensional
embedding through a linear transformation W-

. , Hypergraph Laplacian
man Tr(WTXL\ T ypergrap P

st WIXXTW = |k
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Linear Discriminant Analysis

 LDA attempts to minimize the within-class
variance while maximizing the between-class
variance after the linear projection.

 The optimal linear projection consists of the top
eigenvectors of S TSb, where S, Is the total

covariance |m
covariance migix. ST AR
Sis, = (XX” }*[XSX )
y — T f— ] 1 ) l 1. s s s l nxk
S=HH", H—-:lmg( ”.111.\/%13. '-\/ﬁlk cR"™"

-2 2 6
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Overview of the Two-Stage Approach

W, is computed by solving a
GEP of a reduced size

Stage 1 Stage 2

W, :Ixk

WT -k xd Original * *
|-

data
X:dxn X:kxn X" 1xn

Intermediate data Final reduced data

W, is computed
by solving a X'= WTWTX
least squares 2 1
14 problem
e
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The Two-Stage Approach without Regularization

Algorithm 1 The Two-Stage Appi

1zation
Input: X, H
Output: W
Stage 1: Solve the following least sq problem:

min |[W7i X — H' |7 (10)
W1

Stage 2: Compute X = W7 X, and st e the following
optimization problem:

max Tr(W3 XHH' X' W) (11)
2

s.t. Wi XX'W, =14,
Compute W = W1 Wy as the final solution.

15
e
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The Two-Stage Approach without Regularization

 In the first stage, H' can be considered as the
“latent target” encoded by the label information
Iny.

« Advantages of using LSQR to solve least
sguares In the first stage:

— Good scalabillity.
— Reliable for even ill-conditioned problems.

* |n the second stage, we project the data matrix
X onto a subspace, and solve the resulting
generalized eigenvalue problem of a reduced
size.

16
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Time Complexity Analysis

: 1. 1. Ihe total computational cost of the first stage is
Algorithm 1 The Tw . .
S O(Nk(3n+5d+2z)) using LSQR when X is sparse,
where N is the total number of iterations, z is the
number of nonzero entries in X.

1zation
Input: X. H
Output: W

Stage 1: Solve the fo!' g least squares problem:

min ||[W7 X — H' ' The cost of the second stage is
Wi O(kz+nk?).

Stage 2: Compute X = W{ X, and® < the following
OptiN i
The total computational cost is O(Nk(3n + 5d + N
27) + kz + nk? + dk?) when X is sparse. (11)
T < T —11e cost uf combining the
s. 1. W3 X X" Wa = results in two stages is O(dk?)

Compute W = W1 W5 as the final sotution.

17
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Equivalence without Regularization

THEOREM 1. The top { (£ < rank(A)) projection vectors
computed by Eq. (11) are given by

"vﬁ — (U:’LEEI)E! (22)
where (UAE_;LI)E consists of the first £ columns of (U_:;E_;ll).

Thus, the projection vectors computed by the two-stage ap-
proach are

W=W W, =U,2]"V, (23)

THEOREM 2. The eigenvectors corresponding to the top
¢ (£ < rank(A)) eigenvalues of (XX )/ (XHH"X™) are

[ Wo =U 27 'V, (26)

where V 4, consists of the first £ columns of V.a. Thus,
the two-stage approach produces the same solution as the di-
rect approach which solves the original generalized eigenvalue
problem directly.

18
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The Two-Stage Approach with Regularization

* The two-stage approach can be extended to the
regularization setting

— A penalized least squares problem using the same
target is solved in the first stage.

— The equivalence relationship can also be rigorously
established
A significant improvement of
existing work

 The computational cost of the two-stage
approach in the regularization setting Is the
same as the unregularized one.
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Empirical Evaluation

e Goals:

— To verify the equivalence relationship between the
direct approach and the two-stage approach.

— To demonstrate the scalability of the two-stage
approach.
e Setup

— All experiments are performed on a PC with Intel
Core 2 Duo T9500 2.6G CPU and 4GB RAM.

— Synthetic data are generated using the Gaussian
distribution.

— To verify the equivalence relationship, we compare
[|[W W, - WWT||, under different values of the
regularization parameter v.

20
e
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Data Description

21

Table 1: Statistics of the data sets: n is the number
of samples, d is the data dimensionality, and k is the
number of labels (classes).

Data Set Type n d k
Synl Multi-class | 1000 100 5
Syn2 Multi-class | 1000 5000 5
Syn3 Multi-label | 1000 100 5
Syn4 Multi-label | 1000 5000 5
Ionosphere Multi-class 351 34 2
Optical digits Multi-class | 5620 64 10
Satimage Multi-class | 6435 36 6
USPS Multi-class | 9298 256 10
Wine Multi-class 178 13 3
Scene Multi-label | 2407 294 6
Yeast Multi-label | 2417 103 14
news20 Multi-class | 15935 | 62061 | 20
reviv2 Multi-label | 3000 | 47236 | 101
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AUC Comparison on the Yeast Data Set

« Sample size n = 2417, dimensionality d=103, number of
labels k=14.

 Regularization parameter y= 1le-6 ~ 1e6.

o7 T r—r1 T T T T T T T T T 1T 0.7

A WS Cliqee |

0 6alC125rCCA 1 0.68 HC_125rHSL-Cligue

0.66F 1 0D.6&r

0.64r 7 0.4

0.62r 1 062k
O ®)
2 06r o 06k
<C L

0.58¢ 1 D058

0.56} 1 0GRk

0.54r 1 0.54F

0.52} 1 052+

0.5 . 0.5

6 -5-4-3-2-101 2 3 4586 ' 6 -5-4-3-2-1 01 2 3 4 5 6
logy logy
(A) CCA (C) HSL-Clique
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Scalability Comparison on the rcvlv2 Data Set (1)

o Sample size n=500:500:3000.
« Dimensionality d=5000.

e Number of labels k=101.

——9SrCCA|
sH=—=rCCA

——2STHSL-Clique
sH ——1HSL-Clique

4t
= = 37
=0 =0
—_— — 2 -
1

OF —e g B 0 -=- - —6— —— B

1 ' ' ' ' -1 ' ' ' '

500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000

Sample Size Sample Size
(A) CCA

23 (C) HSL-Clique
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Scalability Comparison on the rcvlv2 Data Set (2)
« Sample size n=3000.

* Dimensionality d=500:500:5000.

Number of labels k=101.

6 G
4r 4k
= = —e—25rHSL-Clique
2 ey 2 . 5
k= S ——1HSL-Clique
2 ' ' ' ' -2 ' ' ' '
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Dimensionality Dimensionality
(A) CCA
24

(C) HSL-Clique
B
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Conclusions and Future Work

o Establish the two-stage approach for a class of
dimensionality reduction techniques including CCA,
OPLS, LDA, and HSL.

— The equivalence relationship is rigorously proved.
— Advantages of the two-stage approach:

 No assumption is required.
It can be applied in the regularization setting.

» Good scalability.

e Future Work
— Extend the two-stage approach to other algorithms similar
to the GEP formulation.

— Online algorithm for the two-stage approach.
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Thank yout
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Equwalence Verification

Data Technique 1.0e-006 | 1.0e-004 | 1.0e-002 | 1.0e4+000 | 1.0e+002 | 1.0e4004 | 1.0e+006
Synl LDA 2.9e-018 | 3.6e-018 | 3.4e-015 | 3.1e-018 | 2.6e-015 2.5e-018 3.1e-019 3.0e-021
Syn2 LDA 553e-019 | 1.4e-018 | 1.2e-015 | 8.9e-019 | 1.2e-015 9.9e-019 2.3e-019 2.9e-021
CCA 4.9e-018 | 8.4e-018 | T.0e-0158 | 6.5e-018 | 9.5e-018 6.0e-018 5.1e-019 T.2e-021
Svn3 OPLS 4.6e-018 | 5.0e-018 | 38.Te-015 | 5.0e-018 | 6.6e-015 6.1e-018 5H.4e-019 5.0e-021
: HSL-Clique | 1.0e-017 | 1.8e-017 | 1.2e-017 | 1.2e-017 | 1.5e-017 1.4e-017 2.9e-018 2.5e-020
HSL-Star 1.4e-017 | 2.4e-017 | 9.3e-015 | 2.6e-017 | 2.1e-017 5.0e-017 9.8e-019 1.3e-020
CCA 1.3e-018 | 5.2e-018 | 3.2e-018 | 1.8e-018 | 1.3e-018 | 1.8e-018 | 4.2e-019 | 5.9e-021
Svnd OPLS 1.0e-015 | 1.1e-018 | 1.3e-015 | 1.5e-018 | 1.3e-015 1.3e-018 2.89e-019 5.9e-021
. HSL-Clique | 2.7e-018 | 2.9e-018 | 2.7e-018 | 5.0e-018 | 3.2e-018 2.7e-018 2.9e-019 1.4e-020
HSL-Star 2.5e-018 | 3.Te-018 | 2.9e-015 | 5.Te-018 | 4.1e-015 2.9e-018 1.1e-01&5 3.1e-020
CCA 2.4e-015 | 2.1e-015 | 6.1e-015 | 3.7e-015 | 1.2e-015 1.8e-016 6.0e-018 9.0e-020
Scene OPLS 2.0e-015 | 3.4e-015 | 3.8e-015 | 2.5e-015 | 1.1e-015 2.3e-016 1.1e-017 1.4e-019
HSL-Clique | 4.5e-015 | 9.1e-015 | 2.6e-014 | 1.2e-014 | 3.6e-015 1.3e-015 5.9e-017 1.0e-018
HSL-Star 4.6e-015 | 3.3e-014 | 2.1e-014 | 7.Te-015 | 1.1e-014 2.5e-016 1.0e-016 6.5e-019
CCA 1.6e-012 | 1.5e-011 | 1.2e-012 | 1.4e-015 | 6.9e-016 5.9e-017 1.7e-015 1.4e-020
Yeast OPLS 4.1e-012 | 1.6e-011 | 3.Te-012 | 1.2e-014 | 1.5e-015 3.7e-016 3.2e-018 2.9e-020
HSL-Cligue | 1.5e-012 | 1.4e-011 | 3.7e-012 | 3.9e-015 | 1.6e-015 2.7e-016 5.1e-018 2.5e-020
HSL-Star 2.1e-012 | 1.0e-011 | 2.4e-012 | 1.1e-014 | 9.4e-015 | 1.1e-015 | 1.5e-017 | 4.4e-019
Wine LDA 5.9e-017 | 2.1e-016 | 2.3e-016 | 2.1e-016 | 3.2e-017 2.2e-018 1.3e-020 2.0e-020
Satimage LDA 4.6e-016 | 2.2e-015 | 3.4e-016 | T.3e-016 | 7.Te-016 8.1e-017 3.9e-017 6.2e-019
lonosphere LDA 8.5e-018 | 1.0e-017 | 4.3e-018 | 2.1e-017 | 6.8e-018 6.6e-018 G.6e-020 1.1e-021
Optical digits | LDA 6.2e-018 | T.2e-018 | 6.Te-0158 | 5.Te-018 | 1.9e-015 1.5e-019 5.9e-020 5.6e-021
USPS LDA T.0e-015 | 3.0e-014 | 2.6e-014 | 6.6e-015 | 1.1e-016 3.0e-018 4.1e-019 6.6e-021
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