Unsupervised Feature Selection for Multi-Cluster Data

Deng Cai, Chiyuan Zhang, Xiaofei He Zhejiang University

Problem: High-dimension Data

ICON MIC

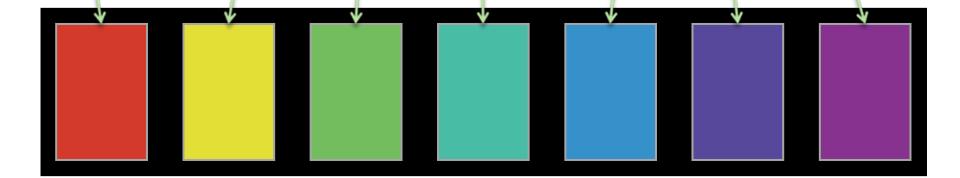
- Text document
- Image
- Video
- Gene Expression
- Financial
- Sensor

Problem: High-dimension Data

- Text document
- Image
- Video
- Gene Expression
- Financial
- Sensor

Solution: Feature Selection

Reduce the dimensionality by finding a relevant feature subset



Feature Selection Techniques

- Supervised
 - Fisher score
 - Information gain

Unsupervised (discussed here)

- Max variance
- Laplacian Score, NIPS 2005
- Q-alpha, JMLR 2005
- MCFS, KDD 2010 (Our Algorithm)
- ...

Outline

Problem setting

Multi-Cluster Feature Selection (MCFS) Algorithm

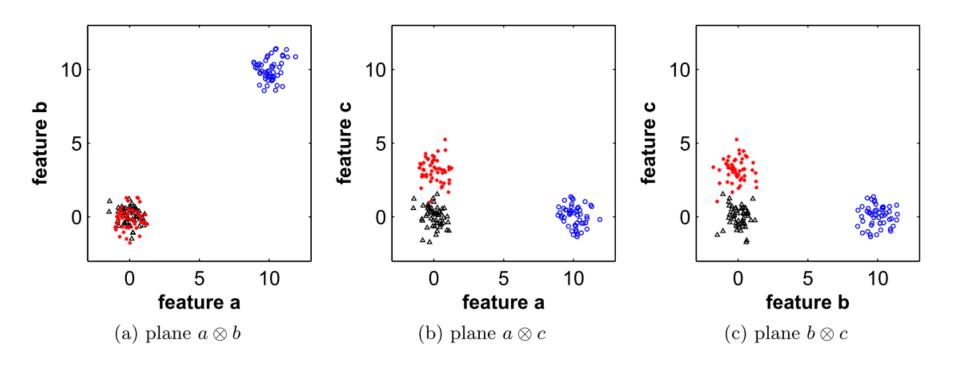
Experimental Validation

Conclusion

Problem setting

Unsupervised Multi clusters/classes Feature Selection

• How traditional score-ranking methods fail:



Multi-Cluster Feature Selection (MCFS) Algorithm

Objective

 Select those features such that the multi-cluster structure of the data can be well preserved

Implementation

- Spectral analysis to explorer the intrinsic structure
- L1-regularized least-square to select best features

Spectral Embedding for Cluster Analysis

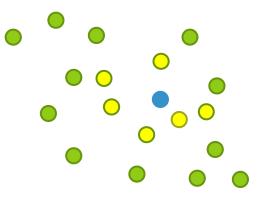
Laplacian Eigenmaps

- 1. Weight matrix W
 - ▶ 0-1 weighting
 - Heat kernel weighting
 - Cosine weighting
- 2. Graph Laplacian

•
$$L = D - W$$
 where $D_{ii} = \sum_j W_{ij}$

3. Generalized Eigen-problem

$$\flat \quad Ly = \lambda Dy$$



Spectral Embedding for Cluster Analysis

- Laplacian Eigenmaps
 - Can *unfold* the data manifold and provide the *flat* embedding for data points
 - Can reflect the data distribution on each of the data clusters
 - Thoroughly studied and well understood

Learning Sparse Coefficient Vectors

LASSO Regression

•
$$\min_{a_k} \|y_k - X^T a_k\|^2 + \beta |a_k|$$

- *a_k* contains the combination coefficients for different features in approximating *y_k*
- With L1-norm regularization, some coefficients will be shrunk to zero if β is large enough
- LARs can be used to solve the problem efficiently
 - and conveniently (explicitly control the sparsity)
- Solved the problem of feature correlation & combination

Feature Selection on Sparse Coefficient Vectors

- Select d features from M feature candidates
- Obtain *K* sparse coefficient vector $\{a_k\}_{k=1}^K$, each of cardinality *d*
- Assign a MCFS score for each feature as
 - $MCFS(j) = \max_k |a_{k,j}|$
- Select the *d* features with top MCFS scores

Algorithm Summary

- 1. Construct p-nearest neighbor graph W
- 2. Solve generalized eigen-problem to get K eigenvectors corresponding to the smallest eigenvalues
- 3. Solve K L1-regulairzed regression to get K sparse coefficient vectors
- 4. Compute the MCFS score for each feature
- 5. Select d features according to MCFS score

Complexity Analysis

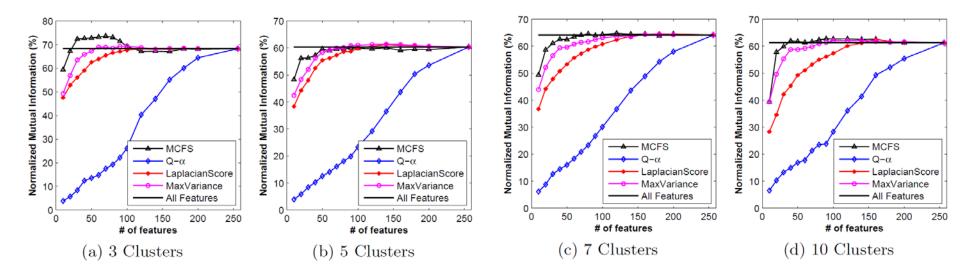
- Graph construction
 - $O(N^2M)$ to compute pairwise distance
 - $O(N^2p)$ to find p neighbors for each data point
- 2. Lanczos algorithm for eigen-problem
 - ▶ O(KNp)
- 3. LARs for LASSO solving
 - $\blacktriangleright O(Kd^3 + NKd^2)$
- 4. MCFS score computation
 - ▶ O(KM)
- 5. Feature selection
 - $\bullet \ O(M \log M)$

Experiments

- Unsupervised feature selection for
 - Clustering
 - Nearest neighbor classification
- Compared algorithms
 - MCFS
 - Q-alpha
 - Laplacian score
 - Maximum variance

Experiments (USPS Clustering)

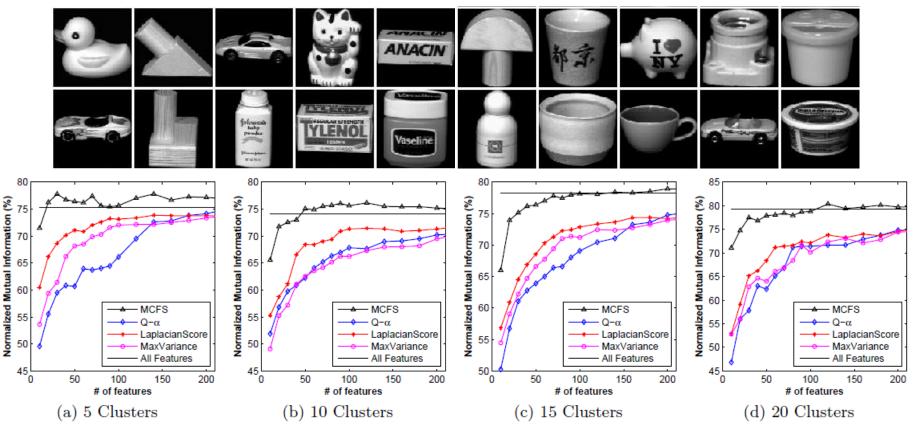
- USPS Hand Written Digits
 - > 9298 samples, 10 classes, 16x16 gray-scale image each



Experiments (COIL20 Clustering)

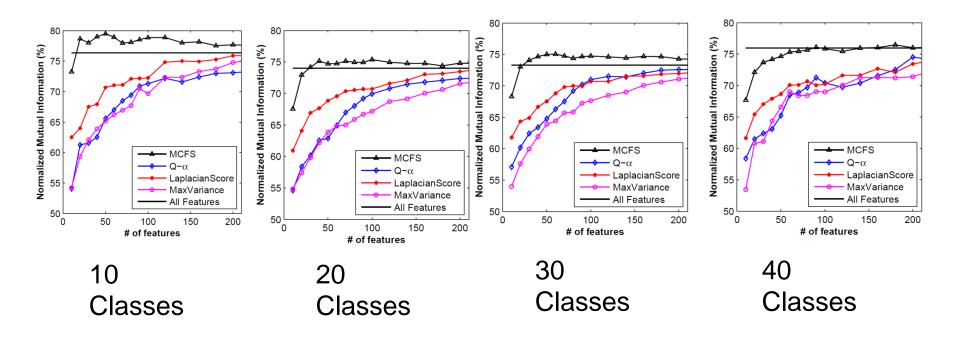
COIL20 image dataset

▶ 1440 samples, 20 classes, 32x32 gray-scale image each



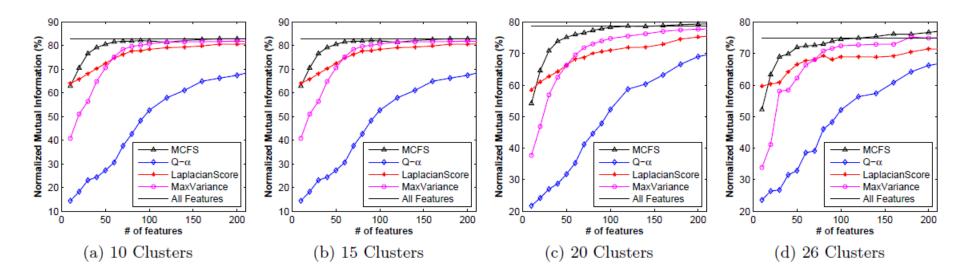
Experiments (ORL Clustering)

- ORL face dataset
 - 400 images of 40 subjects
 - ► 32x32 gray-scale images



Experiments (Isolet Clustering)

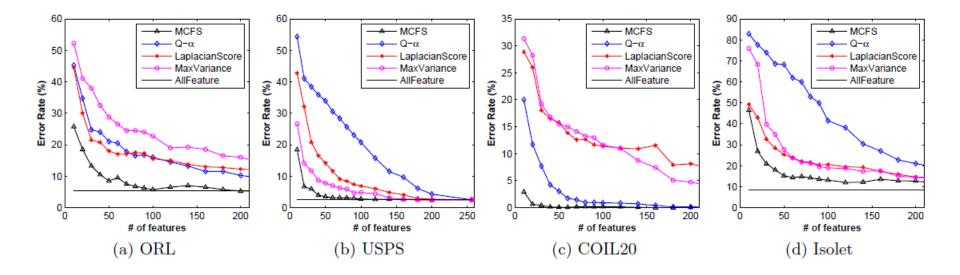
- Isolet spoken letter recognition data
 - ▶ 1560 samples, 26 classes
 - ▶ 617 features each sample



Experiments (Nearest Neighbor Classification)

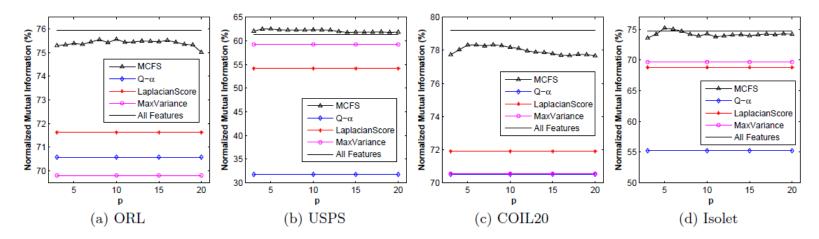
- Leave-one-out cross validation
- Measured by error rate

•
$$ER = 1 - \frac{1}{N} \sum_{i=1}^{N} \delta(c(x_i), c(x'_i))$$

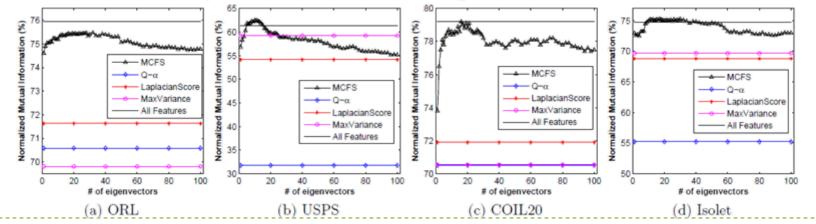


Experiments (Parameter Selection)

Number of nearest neighbors p: stable



Number of eigenvectors: best equal to number of classes



Conclusion

MCFS

- Well handle multi-class data
- Outperform state-of-art algorithms
- Performs especially well when number of selected features is small (< 50)

Questions

Þ

