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Frequent itemset mining (FIM) has shown its great 
promise in various fields. 
◦

 

Business, Medical treatment, Networks, and Bioinformatics



 

For those who lack of expertise in FIM and/or 
computing resources, they have the need of 
outsourcing the mining tasks to a professional third 
party.

The needs of outsourcing FIMThe needs of outsourcing FIM

Data 
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The challenges of outsourcing The challenges of outsourcing 
FIMFIM


 
The mining results should remain correct 
and complete. 



 
Privacy in both raw data and mining results 
should be effectively protected. 



 
The overhead of encryption and decryption 
should be reasonable. 
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The challenges of outsourcing The challenges of outsourcing 
FIMFIM

Trans. ID Items
1 wine

2 cigar, wine

3 cigar, tea

4 beer, cigar, 
wine

5 beer, tea, wine

Trans. ID Items
1 a

2 a, c

3 c, d

4 a, b, c

5 a, b, d

Encrypt
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The challenges of outsourcing The challenges of outsourcing 
FIMFIM


 
Top frequency attack
◦

 
Wine is the most frequent item  ‘a’ is ‘wine’



 
Approximate support attack
◦

 
The support of cigar is about 55%~60% ‘c’ is 
‘cigar’
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The support information about the frequent itemsets can be 
utilized to effectively reveal the raw data as well as the 
sensitive information from the anonymized transactions. 

T. Mielik¨ainen. Privacy problems with anonymized 
transaction databases. In Proc. of Discovery Science, 

2004.



Related WorksRelated Works


 

Encrypt each real items by a one-many mapping 
function. 

Wong, W. K., Cheung, D. W., Hung, E., Kao, B., 
Mamoulis, N.: Security in Outsourcing of 
Association Rule Mining. In: Proc. of VLDB, 

2007.



 

However, it does not try to anonymize the support 
information. 



 

Recently it is cracked.
Molloy, I., Li, N., Li, T.: On the (In)Security and 
(Im)Practicality of Outsourcing Precise 
Association Rule Mining. In: Proc. of ICDM, 

2009
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KK--support Anonymitysupport Anonymity


 
For every sensitive item, there are at least 
k-1 other items of the same support. 



 
Because of k-support anonymity, an 
experience attacker cannot succeed in re- 
identifying sensitive items even with the 
precise support information.
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Problem FormulationProblem Formulation


 
Given a transactional database T, encrypt T 
into T’ such that 
◦

 
There exist a decryption function D such that 
MiningResult(T Δ)= D(MiningResult(T’, Δ)), for 
any minimal support Δ. 
◦

 
T’ is k-support anonymous.
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For each set of real items of the same support, add 
enough fake items randomly into transactions to 
make the fake items as frequent as real ones.



 

However, there could be too large storage 
overhead when k is large. 

A naA naïïve solutionve solution

Trans. ID Items
1 wine

2 cigar, wine

3 cigar, tea

4 beer, cigar, 
wine

5 beer, tea, wine

For k = 3, 
16 additional items are required.

4 x 2 = 8 (e, f) for wine 
3 x 2 = 6 (g, h) for cigar 
2 x 1 = 2 (i) for beer and tea
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Items
a, e, g, h, i

a, c, e, f, h, i

c, d, e, f, g

a, b, c, f, h

a, b, d, e, f, g



Anonymization: OverviewAnonymization: Overview


 

For storage efficiency, we suggest to convert FIM 
to Generalized FIM, which discovers all frequent 
itemsets across levels of a given taxonomy.
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Under generalized association rule mining, items 
can be at multiple levels of a taxonomy and only 
the items at leaf level need to appear in the 
database.

Anonymization: OverviewAnonymization: Overview

Trans. ID Items
1 wine

2 cigar, wine

3 cigar, tea

4 beer, cigar, 
wine

5 beer, tea, wine

Encrypt with k=3

4 additional items 
required

a

f

beer

wine

j

cigar

e

b

i

k

c d
g h

tea

Trans. ID Items
1 c, d, g

2 b, d, g

3 b, h

4 a, b, c

5 a, c, d, h

2
1

1
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wine     {e, f, j}
cigar     {b, c, d}
beer and tea     {a, g, 
h}





 

The real frequent itemsets can be obtained by 
filtering out patterns containing any fake item in 1 
scan of the returned results. 

Anonymization: OverviewAnonymization: Overview

Trans. ID Items
1 wine

2 cigar, wine

3 cigar, tea

4 beer, cigar, 
wine

5 beer, tea, wine
min_sup = 2

a

f
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wine

j

cigar

e

b

i

k

c d
g h

tea

Trans. ID Items
1 c, d, g

2 b, d, g

3 b, h

4 a, b, c

5 a, c, d, hResult={{beer}, {cigar}, {wine}, 
{tea}, 

{beer, wine}, {cigar, wine}}
Result={a, b, c, d, e, f, g, h, i, 
j, k,

ac, af, bf, ce, …} 17
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Anonymization: OverviewAnonymization: Overview

Trans. ID Items
1 wine

2 cigar, wine

3 cigar, tea

4 beer, cigar, 
wine

5 beer, tea, wine

Encrypt with k=3

a

f

beer

wine

j

cigar

e

b

i

k

c d
g h

tea

Trans. ID Items
1 c, d, g

2 b, d, g

3 b, h

4 a, b, c

5 a, c, d, h

The problem is how to build the taxonomy  
and encrypt T for k-support anonymity.
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Anonymization: OverviewAnonymization: Overview


 
1: Generalization of the Mining Task
◦

 
To generate a pseudo taxonomy that can 
(a) conserve the correct and complete mining 
results,
(b) facilitate k-support anonymization.



 
2: Anonymization with Taxonomy Tree
◦

 
To encrypt T for k-support anonymity with the 
help of the constructed taxonomy tree. 
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Build a k-bud tree of T
◦

 
All real items at the leaf level 
◦

 
The number of nodes in three categories is equal 
to or greater than k
Let xM denote the most frequent real item in T


 
A> = { v | sup(v) > sup(xM ) and v is leaf}, 



 
A= = { v | sup(v) = sup(xM )}, and 



 
A< = { v | sup(v) < sup(xM ) < sup(u), where u is 
the parent node of v }.

1: Generalization of the Mining 1: Generalization of the Mining 
TaskTask
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Trans. ID Items
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5 beer, tea, wine



2: Anonymization with Taxonomy 2: Anonymization with Taxonomy 
TreeTree

Trans. ID Items
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3-support anonymity 

4

5

2 2
(tea)

4
(wine)

5

5

3 1

insertion

2

4

a
(beer)

f
(wine)

4

b
(cigar)

4

3

5

5

3 3

2 2
h

(tea)

c d

ge

i j

k

4
(wine)

5

5

3

split increase

Items
wine, p1

cigar, wine, p1

cigar, tea

beer, cigar, 
wine

beer, tea, 
wine

Items
p1, p2

cigar, p1, p3

cigar, tea

beer, cigar, p2

beer, tea, p2

Items
p1, p2, p3

cigar, p1, p3

cigar, tea

beer, cigar, p2

beer, tea, p2, 
p3

p1

p2 p3 p3

x

y



Performance StudiesPerformance Studies


 
Data sets 
◦

 
Retail dataset


 
88162 transactions with 2117 different items

◦
 

T10I1kD100k dataset 


 
100k transactions with 1000 different items
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Performance StudiesPerformance Studies


 

Protection against precise item support attack
◦

 

Item accuracy


 

The ratio of items being re-identified 
◦

 

DB accuracy


 

The avg. ratio of items in a transaction being re-identified

(a) Retail dataset (b) T10I1kD100k dataset
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Performance StudiesPerformance Studies

(a) Retail dataset (b) T10I1kD100k dataset



 

Protection against precise itemset support attack
◦

 

Item accuracy


 

The ratio of items being re-identified 
◦

 

DB accuracy


 

The avg. ratio of items in a transaction being re-identified
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Performance StudiesPerformance Studies


 
Storage overhead 

(a) Retail dataset (b) T10I1kD100k dataset
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Performance StudiesPerformance Studies


 
Execution efficiency

(a) Retail dataset (b) T10I1kD100k dataset
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Conclusions Conclusions 


 

We proposed k-support anonymity to enhance the 
privacy protection in outsourcing of frequent 
itemset mining (FIM).



 

For storage efficiency, we transformed FIM to 
Generalized FIM, and proposed a taxonomy-based 
anonymization algorithm. 



 

Our method allows the data owner to obtain the 
real frequent itemsets in1 scan of the returned 
results.



 

Experimental results on both real and synthetic 
data sets showed that our method can achieve 
very good privacy protection with moderate storage 
overhead.
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THANK YOU~!THANK YOU~! 

Q & AQ & A
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