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Graph Classification

- why should we care?

O Conventional data mining and machine learning
approaches assume data are represented as feature
vectors. Eg. (Xq, X5, .., Xq) - Y

d In real apps, data are not directly represented as

feature vectors, but graphs with complex structures.
Eg. 6(V,E,I)-y
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Example: Graph Classification
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Subgraph-based Graph

Classification

Subgraph Patterns
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Conventional Methods

- Two Components
3

Two Components:

1. Evaluation (effective) S
whether a subgraph feature is Labeled Graphs
relevant to graph classification? B

2. Search space pruning  (efficient) | ‘i @E
how to avoid enumerating
all subgraph features? P

Discriminative
Subgraphs



One Problem

Supervised Settings

Require a large set of labeled

training graphs

However ...
)
— / Labeling
X a graph
N is hard |
\— /)

)
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Discriminative
Subgraphs
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Lack of labels -> problems

Supervised Methods:

1. Evaluation effective?
require large amount of label
information

2. Search space pruning  efficient?
pruning performances rely on
large amount of label information 4%

Discriminative
Subgraphs



Semi-Supervised Feature

Selection for Graph Classification

Evaluation
Criteria
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Two Key Questions to Address

Evaluation: How to evaluate a set of
subgraph features with both labeled and
unlabeled graphs? (effective)  (umm




What is a good feature?

Cannot-Link

Graphs in
different classes
should be far away

Must-Link

Graphs in the same
class should be
close

eparability

Unla eled grap hs
are able to be
separated from
each other
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Optimization

Cannot-Link

Graphs in different
classes should be far
away

Must-Link

Graphs in the same
class should be
close

Separability
Unlabeled graphs
are able to be
separated from
each other




Evaluation: gSemi Criterion
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Experiment Results
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Experiment Results

0.55 (#labeled graphs=30, MCF-3)

gSemi
A (Semi-Supervised)
Accuracy @ Information Gain
(higher is (Supervised)
petter) Frequent
(Unsupervised)

50

# Sélected Features

Our approach performed best at NCl and PTC
datasets 14]



Two Key Questions to Address

How to prune the subgraph search space
using both labeled and unlabeled graphs?

(efficient)  <{zm

[15)



Finding a Needle in a Haystack

gSpan van et. al ICOM02] Pattern Search Tree

An efficient algorithm to 1
enumerate all frequent 0-edges \O
subgraph patterns
(frequency > min_support) I-edge
2-edges

Too many frequent

How to find the Best node(s) in this tree

without searching all the nodes?
(Branch and Bound to prune the search




Pruning Principle

AgSemi score Pattern Search Tree

L
best subgraph current SN

N\

best score 2 upper bound

We can prune the entire
sub-tree




Pruning Results
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Pruning Results

# Subgraphs
explored
(lower is better)
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Conclusions

Semi-Supervised Feature Selection for v
Graph Classification

Evaluating subgraph features using both

labeled and unlabeled graphs (effective)

Branch&bound pruning the search space using
labeled and unlabeled graphs (efficient)

Thank you!

20)
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