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Information Networks
• Node represents an entity

– Each node has feature values
– e.g., users in social networks, webpages on internet

• Link represents relationship between entities
– e.g., two users are linked if they are friends; two 

webpages are linked through hyper-links
• Information networks are ubiquitous
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Outlier (Anomaly, Novelty) Detection
• Goal

– Identify points that deviate significantly from the majority 
of the data
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Community Outliers
• Definition

– Two information sources: links, node features
– There exist communities based on links and node 

features
– Objects that have feature values deviating from 

those of other members in the same community are 
defined as community outliers

high-income low-income

community 
outlier
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Contextual (Conditional) Outliers
• Global vs. Contextual

– Global: identify outliers among all the data
– Contextual: identify outliers within a subset of 

data defined by contextual features
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Examples
• Contexts

– a subset of features, temporal, spatial, or 
communities in networks (in this paper)

temporal 
contexts

spatial 
contexts
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Outliers in Information Networks

1) Global outlier: 

only consider node 
features

2) Structural outlier:

only consider links

3) Local outlier: 

only consider the 
feature values of 
direct neighbors
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Unified Model is Needed
• Links and node features 

– More meaningful to identify communities based on links and 
node features together

• Community discovery and outlier detection 
– Outliers affect the discovery of communities

consider 
links only
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A Unified Probabilistic Model (1)
community 

label Z

outlier

node 
features 

X

link structure 
W

high-income:
mean: 116k

std: 35k

low-income:
mean: 20k

std: 12k

model 
parameters

K: number of 
communities
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A Unified Probabilistic Model (2)

• Probability
– Maximize P(X)       P(X|Z)P(Z)
– P(X|Z) depends on the community label and model 

parameters
• eg., salaries in the high or low-income communities follow 

Gaussian distributions defined by mean and std
– P(Z) is higher if neighboring nodes from normal 

communities share the same community label
• eg., two linked persons are more likely to be in the same 

community
• outliers are isolated—does not depend on the labels of 

neighbors


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Modeling Continuous or Text Data

• Continuous
– Gaussian distribution
– Model parameters: mean, standard deviation

• Text
– Multinomial distribution
– Model parameters: probability of a word appearing 

in a community
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Fix    , find Z 
that maximizes P(Z|X)

Fix Z, find 
that maximizes P(X|Z)

Community Outlier Detection Algorithm





Initialize Z

Inference

Parameter 
estimation

: model parameters
Z: community labels


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Inference (1)
• Calculate Z

– Model parameters are known
– Iteratively update the community labels of nodes
– Select the label that maximizes P(Z|X,ZN )

100k

low- 
income

high- 
income

high- 
income

high-income: 110k

mean:

low-income: 30k

high-income? 
80%

low-income? 
10%

outlier? 10%
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Inference (2)
• Calculate P(Z|X,ZN )

– Consider both the node features and community labels of 
neighbors if Z indicates a normal community

– If the probability of a node belonging to any community is 
low enough, label it as an outlier

100k

low- 
income

high- 
income

high- 
income

high-income: 100k

mean:

low-income: 30k

P(salary=100k|high-income)

P(salary=100k|low-income)

constant

P(high-income|neighbors)

P(low-income|neighbors)

high-income:

low-income:

outlier:
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Parameter Estimation

• Calculate model parameters
– maximum likelihood estimation

• Continuous
– mean: sample mean of the community
– standard deviation: square root of the sample 

variance of the community
• Text

– probability of a word appearing in the community: 
empirical probability
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Simulated Experiments 
• Data

– Generate continuous data based on Gaussian 
distributions and generate labels according to the 
model

– r: percentage of outliers, K: number of communities
• Baseline models

– GLODA: global outlier detection (based on node 
features only)

– DNODA: local outlier detection (check the feature 
values of direct neighbors)

– CNA: partition data into communities based on links 
and then conduct outlier detection in each community
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Precision
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Experiments on DBLP 

• Data
– DBLP: computer science bibliography
– Areas: data mining, artificial intelligence, 

database, information analysis
• Case studies

– Conferences:
• Links: percentage of common authors among two 

conferences
• Node features: publication titles in the conference

– Authors:
• Links: co-authorship relationship
• Node features: titles of publications by an author
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Case Studies on Conferences

Community outliers: CVPR CIKM
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Conclusions
• Community Outliers

– Nodes that have different behaviors 
compared with the others in the community

• Community Outlier Detection
– A unified probabilistic model
– Conduct community discovery and outlier 

detection simultaneously
– Consider both links and node features
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Thanks!

• Any questions?
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