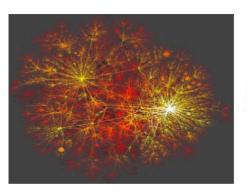
On Community Outliers and their Efficient Detection in Information Networks

Jing Gao¹, Feng Liang¹, Wei Fan², Chi Wang¹, Yizhou Sun¹, Jiawei Han¹

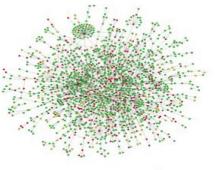
1 University of Illinois2 IBM TJ Watson

Information Networks

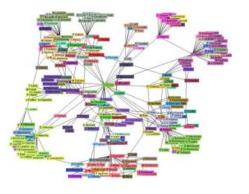
- Node represents an entity
 - Each node has feature values
 - e.g., users in social networks, webpages on internet
- Link represents relationship between entities
 - e.g., two users are linked if they are friends; two webpages are linked through hyper-links
- Information networks are ubiquitous



An Internet Web



Yeast protein interaction network



Co-author network

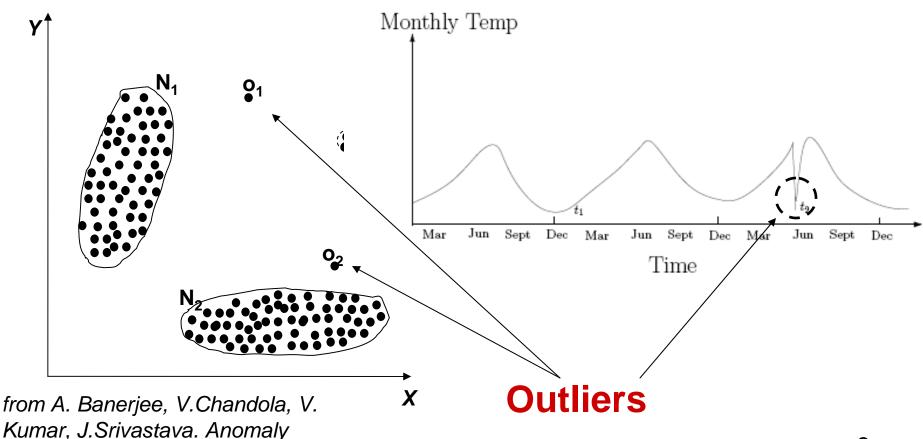
Social network sites

Outlier (Anomaly, Novelty) Detection

Goal

Detection: A Tutorial, SDM'08

 Identify points that deviate significantly from the majority of the data

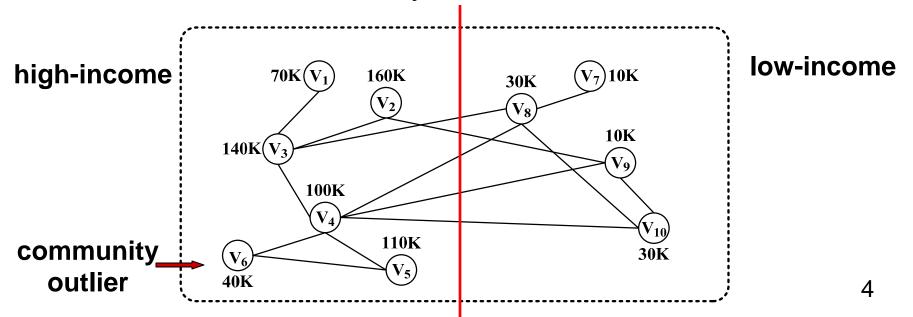


3

Community Outliers

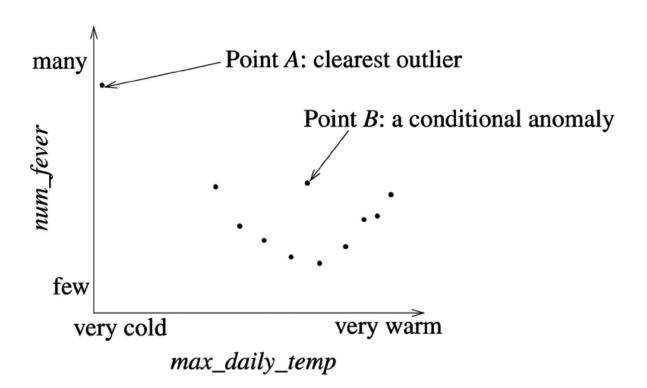
Definition

- Two information sources: links, node features
- There exist communities based on links and node features
- Objects that have feature values deviating from those of other members in the same community are defined as community outliers



Contextual (Conditional) Outliers

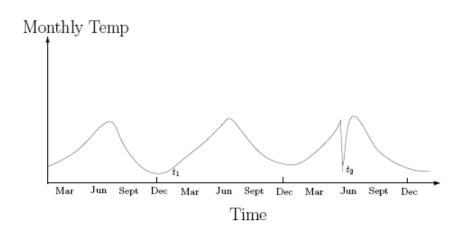
- Global vs. Contextual
 - Global: identify outliers among all the data
 - Contextual: identify outliers within a subset of data defined by contextual features

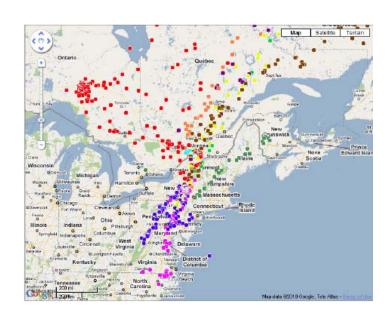


Examples

Contexts

 a subset of features, temporal, spatial, or communities in networks (in this paper)





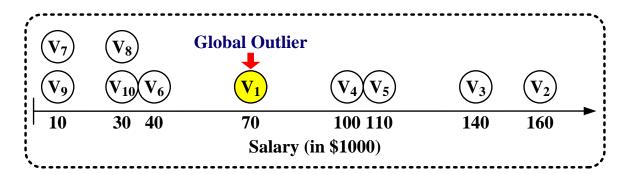
temporal contexts

spatial contexts

Outliers in Information Networks

1) Global outlier:

only consider node features



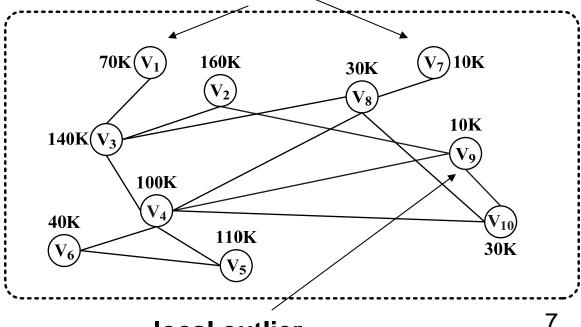
2) Structural outlier:

only consider links

3) Local outlier:

only consider the feature values of direct neighbors

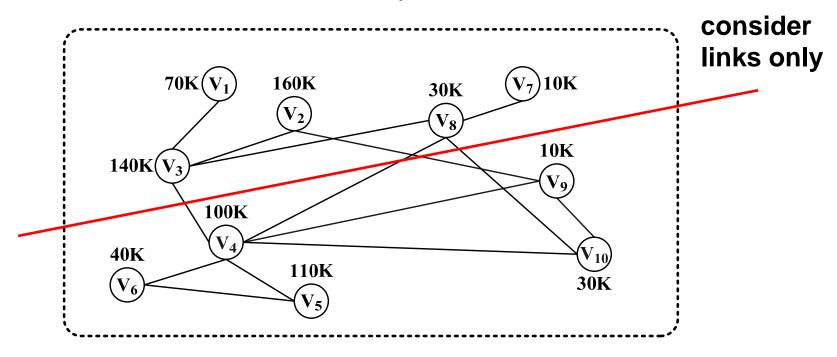
structural outlier



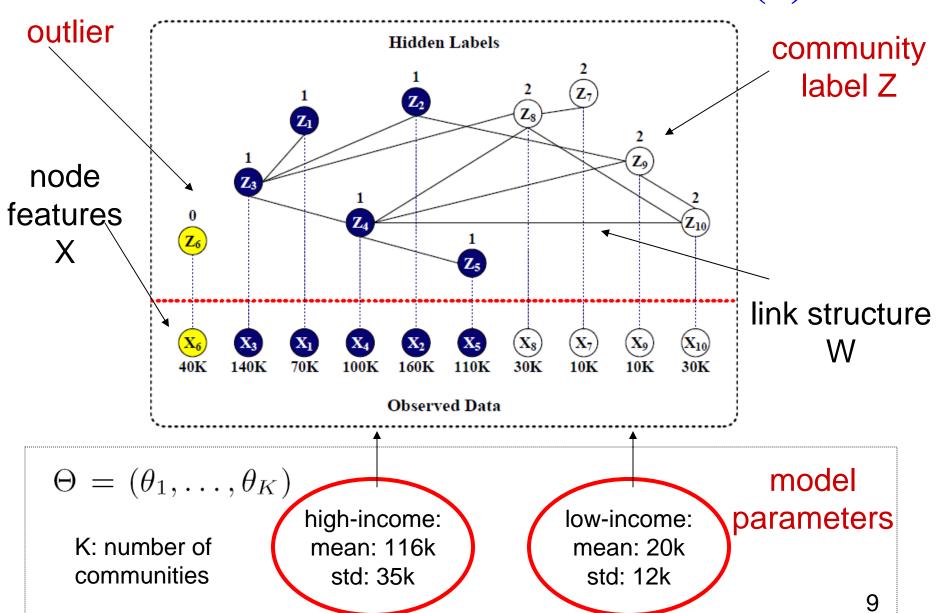
local outlier

Unified Model is Needed

- Links and node features
 - More meaningful to identify communities based on links and node features together
- Community discovery and outlier detection
 - Outliers affect the discovery of communities



A Unified Probabilistic Model (1)



A Unified Probabilistic Model (2)

Probability

- Maximize $P(X) \propto P(X|Z)P(Z)$
- P(X|Z) depends on the community label and model parameters
 - eg., salaries in the high or low-income communities follow Gaussian distributions defined by mean and std
- P(Z) is higher if neighboring nodes from normal communities share the same community label
 - eg., two linked persons are more likely to be in the same community
 - outliers are isolated—does not depend on the labels of neighbors

Modeling Continuous or Text Data

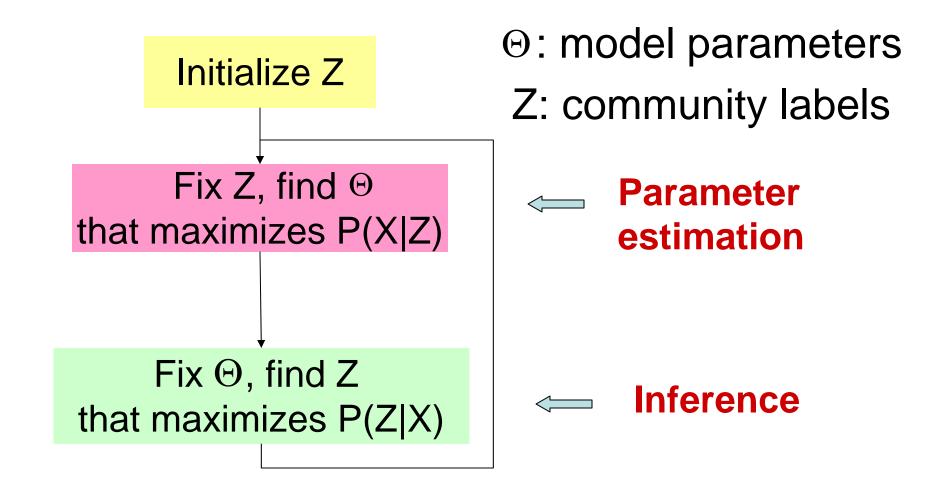
Continuous

- Gaussian distribution
- Model parameters: mean, standard deviation

Text

- Multinomial distribution
- Model parameters: probability of a word appearing in a community

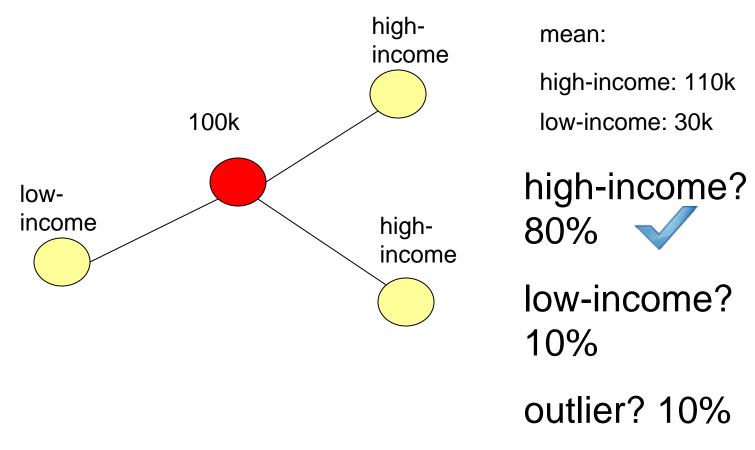
Community Outlier Detection Algorithm



Inference (1)

Calculate Z

- Model parameters are known
- Iteratively update the community labels of nodes
- Select the label that maximizes $P(Z|X,Z_N)$



Inference (2)

Calculate P(Z|X,Z_N)

- Consider both the node features and community labels of neighbors if Z indicates a normal community
- If the probability of a node belonging to any community is low enough, label it as an outlier



Parameter Estimation

- Calculate model parameters
 - maximum likelihood estimation

Continuous

- mean: sample mean of the community
- standard deviation: square root of the sample variance of the community

Text

probability of a word appearing in the community:
empirical probability

Simulated Experiments

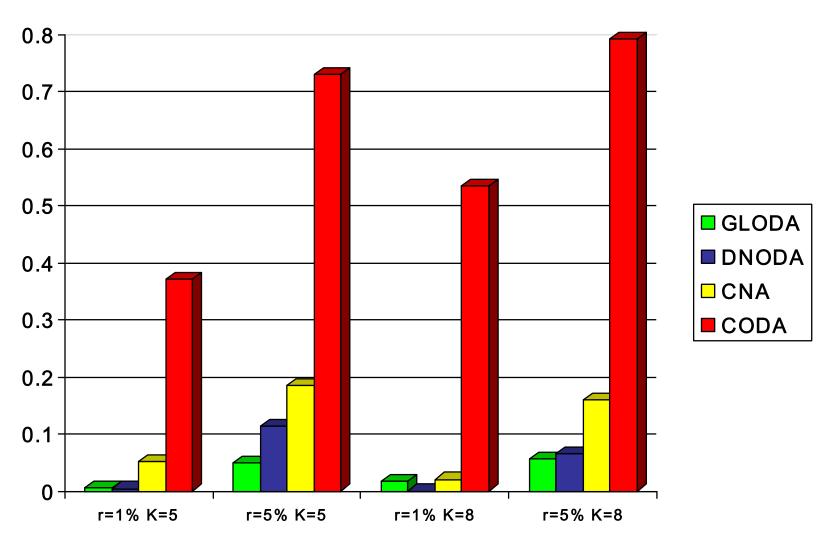
Data

- Generate continuous data based on Gaussian distributions and generate labels according to the model
- r: percentage of outliers, K: number of communities

Baseline models

- GLODA: global outlier detection (based on node features only)
- DNODA: local outlier detection (check the feature values of direct neighbors)
- CNA: partition data into communities based on links and then conduct outlier detection in each community

Precision



Experiments on DBLP

Data

- DBLP: computer science bibliography
- Areas: data mining, artificial intelligence, database, information analysis

Case studies

- Conferences:
 - Links: percentage of common authors among two conferences
 - Node features: publication titles in the conference

– Authors:

- Links: co-authorship relationship
- Node features: titles of publications by an author

Case Studies on Conferences

Communities	Keywords
Data	frequent dimensional spatial association similarity
Mining	pattern fast sets approximate series
Database	oriented views applications querying design
	access schema control integration sql
Artificial	reasoning planning logic representation recognition
Intelligence	solving problem reinforcement programming theory
Information	relevance feature ranking automatic documents
Analysis	probabilistic extraction user study classifiers

- Database: ICDE, VLDB, SIGMOD, PODS, EDBT
- Artificial Intelligence: IJCAI, AAAI, ICML, ECML
- Data Mining: KDD, PAKDD, ICDM, PKDD, SDM
- Information Analysis: SIGIR, WWW, ECIR, WSDM

Community outliers: CVPR CIKM

Conclusions

Community Outliers

 Nodes that have different behaviors compared with the others in the community

Community Outlier Detection

- A unified probabilistic model
- Conduct community discovery and outlier detection simultaneously
- Consider both links and node features

Thanks!

• Any questions?