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Approximate inference

e \\Ve want to approximate a distribution p(B), but we
can only compute it up to a constant.

e E.g., we're interested in p(© | y), but can only
compute ply, 0).



Variatio

nal Inference

e \ariational inference approximates p(6 | y) with
some tractable dist

opti

mization proble

rloution q(B) by solving an

M.



Variational inference:
the agony and the ecstasy

e \ariational methods often converge much faster
than Markov chain Monte Carlo (MCMC) methods.
BSut they suffer from two major drawbacks:

1. Model expressivity: updates and objective
functions are usually restricted to conditionally
conjugate models paired with simple
approximating distributions.

2. User-friendliness: deriving variational updates
INvolves a falr amount of tedious math.



Nonparametric variational
iNnference

* \We derive a variational inference algorithm that

1. 1s applicable to models without conditional
conjugacy and

2. only requires the ability to evaluate the log-
posterior (up to a constant), its gradient, and
optionally the diagonal of its Hessian.




Our approach

e \We restrict g to be a mixture of Gaussians (cf. the
mixture mean-field approach of Lawrence, Jaakola,
et al.):

q(8) = (1/N) 21 N(B; un, o)

e (Can be interpreted as kernel density estimation of
the posterior p(© | y).



Our approach

e [he standard variational objective (“evidence lower
bound”, or ELBO) is

~(a) = Edllog ply, 6)] = Eqllog a(O)]

where vy Is a set of observed variables, 6 is a set of
latent variables, and g is the approximating
distribution.

e \\Ve derive an approximate ELBO that can be easily
optimized using gradient methods (e.g. LBFGS).




1 he basic idea
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=Ntropy bouno

q) =-Js q(B) log q(B) d6

= — [, q(6) log 1/N) Sh N(e; n, On) dE
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| 0g-joint bouno

2nd-order Taylor expansion (multivariate delta
method for moments) yields

—qllog ply, 6)] = (1/N) 2n log ply, un) + (07/2) Tr(Hn)

Only requires diagonal of Hessian Hn evaluated at pn.




Approximate ELBO

-ncourages each un Discourages overly
to be in a high- i
broad Gaussians

density region
\ /
(1/N) 2n log ply, pn) + (0r/2) Tr(Hn)

2

—log Zj N(un; i, on + O)

/ “ncourages

—Ncourages means
to spread out

(Gaussians to be
broader




Optimizing the approximate
ELBO

(1/N) 2n log ply, pn) + (08/2) Tr(Hn)
—10g 2j N(un; i, O + Of)

1. Optimize each pn holding others fixed, ignoring
Hessian trace term.

® Avoids computing N third derivatives.

® Avoids possible degeneracies with non-log-
concave posteriors.

2. Optimize o vector holding u fixed.



Relationships to other
algorithms

N =1, 00— 0: maximum a posteriori (MAP).

N =1, o variable: diagonalized Laplace
approximation.

N > 1, 0 — 0: quasi-Monte Carlo.

N > 1, 0 variable: a form of mixture mean-field
(Jaakkola & Jordan, 1998; Lawrence, 2000).

e Analogous to KDE.




Synthetic example
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|_ogistic regression:

NPV vs. Jordan & Jaakkola
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lopographic latent source analysis:

NPV vs. MAP and MCMC
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Summary

o Nonparametric variational inference
1. circumvents conjugacy restrictions and

2. allows for more expressive variational distributions
than mean-field.

® Can be used for arbitrary graphical models.



Future work

o (Consider more flexible classes of approximating
distributions

e Non-isotropic Gaussians

e Nonuniform mixture weights

o Extend to models with discrete random variables
e (Continuous relaxations?

e |mplement in Stan (Mc-stan.orQ)



