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Approximate inference

• We want to approximate a distribution p(θ), but we 
can only compute it up to a constant.
• E.g., we’re interested in p(θ | y), but can only 

compute p(y, θ).



Variational inference

• Variational inference approximates p(θ | y) with 
some tractable distribution q(θ) by solving an 
optimization problem.



Variational inference:
the agony and the ecstasy

• Variational methods often converge much faster 
than Markov chain Monte Carlo (MCMC) methods. 
But they suffer from two major drawbacks:
1. Model expressivity: updates and objective 

functions are usually restricted to conditionally 
conjugate models paired with simple 
approximating distributions.

2. User-friendliness: deriving variational updates 
involves a fair amount of tedious math.



Nonparametric variational 
inference

• We derive a variational inference algorithm that
1. is applicable to models without conditional 

conjugacy and
2. only requires the ability to evaluate the log-

posterior (up to a constant), its gradient, and 
optionally the diagonal of its Hessian.



Our approach

• We restrict q to be a mixture of Gaussians (cf. the 
mixture mean-field approach of Lawrence, Jaakola, 
et al.):
q(θ) = (1/N) Σn N(θ; μn, σn)

• Can be interpreted as kernel density estimation of 
the posterior p(θ | y).
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Our approach
• The standard variational objective (“evidence lower 

bound”, or ELBO) is
F(q) = Eq[log p(y, θ)] – Eq[log q(θ)]
where y is a set of observed variables, θ is a set of 
latent variables, and q is the approximating 
distribution.

• We derive an approximate ELBO that can be easily 
optimized using gradient methods (e.g. LBFGS).



The basic idea
F(q) = Eq[log p(y, θ)] – Eq[log q(θ)]

Lower-bound entropy 
using Jensen’s 
inequality and by 
exploiting properties of 
Gaussian mixtures

Approximate using 
Taylor series expansion 
around the mean of 
each Gaussian 
component



Entropy bound

H(q) = – ∫θ q(θ) log q(θ) dθ
        = – ∫θ q(θ) log (1/N) Σn N(θ; μn, σn) dθ
        ≥ – (1/N) Σn log ∫θ q(θ) N(θ; μn, σn) dθ
        ≥ – (1/N) Σn log Σj N(μn; μj, σn + σj )
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Log-joint bound

2nd-order Taylor expansion (multivariate delta 
method for moments) yields
Eq[log p(y, θ)] ≈ (1/N) Σn log p(y, μn) + (σn/2) Tr(Hn)
Only requires diagonal of Hessian Hn evaluated at μn.
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Approximate ELBO

(1/N) Σn log p(y, μn) + (σn/2) Tr(Hn) 
             – log Σj N(μn; μj, σn + σj )

Encourages each μn 
to be in a high-
density region

Discourages overly 
broad Gaussians

Encourages 
Gaussians to be 
broader

Encourages means 
to spread out
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Optimizing the approximate 
ELBO

(1/N) Σn log p(y, μn) + (σn/2) Tr(Hn) 
             – log Σj N(μn; μj, σn + σj )
1. Optimize each μn holding others fixed, ignoring 
Hessian trace term.

• Avoids computing N2 third derivatives.

• Avoids possible degeneracies with non-log-
concave posteriors.

2. Optimize σ vector holding μ fixed.
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Relationships to other 
algorithms

• N = 1, σ → 0: maximum a posteriori (MAP).

• N = 1, σ variable: diagonalized Laplace 
approximation.

• N > 1, σ → 0: quasi-Monte Carlo.

• N > 1, σ variable: a form of mixture mean-field 
(Jaakkola & Jordan, 1998; Lawrence, 2000).
• Analogous to KDE.



Synthetic example



Logistic regression:
NPV vs. Jordan & Jaakkola



Topographic latent source analysis: 
NPV vs. MAP and MCMC



Summary

• Nonparametric variational inference
1. circumvents conjugacy restrictions and
2. allows for more expressive variational distributions 

than mean-field.

• Can be used for arbitrary graphical models.



Future work
• Consider more flexible classes of approximating 

distributions
• Non-isotropic Gaussians
• Nonuniform mixture weights

• Extend to models with discrete random variables
• Continuous relaxations?

• Implement in Stan (mc-stan.org)


