Computational and Sample Tradeoffs via Convex Relaxation

Venkat Chandrasekaran

Caltech

Joint work with Michael Jordan

High-dimensional Data

Gene microarray analysis

Global weather modeling

- Statistical inference with many variables
- Data in high-dimensional spaces
- E.g., images, Netflix, protein sequencing, ...

High-dimensional Data

- A major success story in recent years
 - Role of structure: sparsity, low-rank, ...
 - Sophisticated computational techniques
- Fundamental limits on n for consistent inference

A New Challenge

- Large p + large n
 - Social data, financial modeling, ...
- n much larger than fundamental limits
- Significant computational challenge

A Thought Experiment

- Consider a typical inference scenario
 - -1 hour for inference task with n = 5000, risk = 0.03
 - 20 days for same task with n = 500000, risk = 0.0003

- Suppose we don't care about such small improvements in risk
 - Statistical models are only approximations to reality

- O More data useful for less computation?
 - Process larger datasets more coarsely?

Computer Science v.s. Statistics

Outline

O What can we expect from time-data tradeoffs?

A simple statistical inference problem

Convex programming based estimation

Tradeoffs via convex relaxation

- Consider an inference problem with *fixed* risk
- Inference procedures viewed as points in plot

- Consider an inference problem with *fixed* risk
- Vertical lines

- Consider an inference problem with *fixed* risk
- Horizontal lines

Consider an inference problem with *fixed* risk

- Need "weaker" algorithms for larger datasets
- At some stage, throw away data
- Tradeoff runtime *upperbounds*
 - More data means smaller runtime upper bound

An Estimation Problem

- \circ Signal $\mathbf{x}^* \in \mathcal{S} \subset \mathbb{R}^p$ from known (bounded) set
- o Noise $\mathbf{z} \sim \mathcal{N}(0, I_{p \times p})$

Observation model

$$\mathbf{y} = \mathbf{x}^* + \sigma \mathbf{z}$$

o Observe n i.i.d. samples $\{y_i\}_{i=1}^n$

Convex Programming Estimator

o Sample mean
$$\bar{\mathbf{y}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{y}_i$$
 is sufficient statistic

Natural estimator

$$\hat{\mathbf{x}}_n(\mathcal{S}) = \arg\min_{\mathbf{x} \in \mathbb{R}^p} \frac{1}{2} \|\bar{\mathbf{y}} - \mathbf{x}\|_{\ell_2}^2 \quad \text{s.t. } \mathbf{x} \in \mathcal{S}$$

Convex programming estimator

$$\hat{\mathbf{x}}_n(C) = \arg\min_{\mathbf{x} \in \mathbb{R}^p} \frac{1}{2} \|\bar{\mathbf{y}} - \mathbf{x}\|_{\ell_2}^2 \quad \text{s.t. } \mathbf{x} \in C$$

– C is a **convex** set such that $S \subset C$

 Defn 1: The cone of feasible directions into a convex set C is defined as

$$T(\mathbf{x}^*, C) = \text{cone}\{w - \mathbf{x}^* | w \in C\}$$

 Defn 1: The cone of feasible directions into a convex set C is defined as

$$T(\mathbf{x}^*, C) = \text{cone}\{w - \mathbf{x}^* | w \in C\}$$

 Defn 2: The Gaussian (squared) complexity of a cone T is defined as

$$g(T) = \mathbb{E} \left[\sup_{\delta \in T, \|\delta\|_{\ell_2} \le 1} \langle \mathbf{z}, \delta \rangle^2 \right]$$

 \circ Prop: The risk of the estimator $\hat{\mathbf{x}}_n(C)$ is

$$\mathbb{E}\left[\|\hat{\mathbf{x}}_n(C) - \mathbf{x}^*\|_{\ell_2}^2\right] \le \frac{\sigma^2}{n} \ g\left(T(\mathbf{x}^*, C)\right)$$

Proof: Apply optimality conditions

Intuition: Only consider error in feasible cone

 \circ E.g.: the risk of the estimator $\hat{\mathbf{x}}_n(\mathbb{R}^p)$ is

$$\mathbb{E}\left[\|\hat{\mathbf{x}}_n(\mathbb{R}^p) - \mathbf{x}^*\|_{\ell_2}^2\right] \leq \frac{\sigma^2}{n}p$$

- Can generalize proposition in several ways
 - Obtain better bias-variance tradeoffs
 - Similar results for non-Gaussian noise

Weakening via Convex Relaxation

 \circ Prop: The risk of the estimator $\hat{\mathbf{x}}_n(C)$ is

$$\mathbb{E}\left[\|\hat{\mathbf{x}}_n(C) - \mathbf{x}^*\|_{\ell_2}^2\right] \le \frac{\sigma^2}{n} \ g\left(T(\mathbf{x}^*, C)\right)$$

Corr: To obtain risk of at most 1,

$$n \ge \sigma^2 g\Big(T(\mathbf{x}^*, C)\Big)$$

Weakening via Convex Relaxation

Corr: To obtain risk of at most 1,

$$n \ge \sigma^2 \ g\Big(T(\mathbf{x}^*, C)\Big)$$

Monotonic in C

O Key point:

If we have access to larger n, can use larger C

Weakening via Convex Relaxation

If we have access to larger n, can use larger C

→ Obtain "weaker" estimation algorithm

Hierarchy of Convex Relaxations

 \circ If \mathcal{S} "algebraic", then one can obtain family of outer convex approximations

$$\operatorname{conv}(\mathcal{S}) \subseteq \cdots \subset C_3 \subset C_2 \subset C_1$$

Polyhedral, semidefinite, hyperbolic relaxations
(Sherali-Adams, Parrilo, Lasserre, Garding, Renegar)

- \circ Sets $\{C_i\}$ ordered by *computational complexity*
 - Central role played by lift-and-project

Hierarchy of Convex Relaxations

$$\operatorname{conv}(\mathcal{S}) \subseteq \cdots \subset C_3 \subset C_2 \subset C_1$$

- Concept of lift-and-project
 - Sets expressed as projection of affine slice of cone
 - Orthant (linear programming)
 - PSD cone (semidefinite programming)

- Larger dimensional lifts
 - Better approximation
 - Greater computational cost

Contrast to Previous Work

- Binary classifier learning
 - Decatur et al. [1998], Servedio [2000], Shalev-Shwarz & Srebro [2008], Perkins & Hallett [2010], Shalev-Shwarz et al. [2012]
 - Lots of extra data required for simpler algorithms
 - Our examples: modest extra data for simpler algorithms
- Sparse PCA, clustering, network inference
 - Amini & Wainwright [2009], Kolar et al. [2011]

- Our work: Emphasis on algorithm weakening
 - Convex relaxation: principled, general way to do this

Before we get to examples ...

O How do we calculate runtime?

O Total runtime = np + # ops for projection

Computing sample mean

With more data, this *increases*

Subsequent processing

With more data, this *decreases*

Before we get to examples ...

- Estimating Gaussian complexity
 - General techniques: covering numbers, Dudley's integral formula (1967), ...
 - Usually not sharp

 \circ Thm: If a convex cone T has a dual with relative volume μ , then

$$g(T) \le 20 \log(\frac{1}{4\mu})$$

Proof: Appeal to Gaussian isoperimetry

 \circ S consists of cut matrices

$$S = \{aa' \mid a \text{ consists of } \pm 1's\}$$

E.g., collaborative filtering, clustering

C	Runtime	n
conv(S) (cut polytope)	super-poly (p)	$c_1\sqrt{p}$
elliptope	$p^{2.25}$	$c_2\sqrt{p}$
nuclear norm ball	$p^{1.5}$	$c_3\sqrt{p}$

$$(c_1 < c_2 < c_3)$$

- Banding estimators for covariance matrices
 - Bickel-Levina (2007), many others
 - Assume known variable ordering
- Stylized problem: let M be known tridiagonal matrix
- \circ Signal set $S = \{\Pi M \Pi' \mid \Pi \text{ a permutation}\}$

C	Runtime	n
$\operatorname{conv}(\mathcal{S})$	super-poly(p)	$c_1\sqrt{p}\log(p)$
scaled ℓ_1 norm ball	$p^{1.5}\log(p)$	$c_2\sqrt{p}\log(p)$

$$(c_1 < c_2)$$

- \circ Signal set $\mathcal S$ consists of all perfect matchings in complete graph
- E.g., network inference

C	Runtime	n
$\operatorname{conv}(\mathcal{S})$	p^5	$c_1\sqrt{p}\log(p)$
hypersimplex	$p^{1.5}\log(p)$	$c_2\sqrt{p}\log(p)$

$$(c_1 < c_2)$$

- \circ \mathcal{S} consists of all adjacency matrices of graphs with only a clique on square-root of the nodes
- E.g., sparse PCA, gene expression patterns
- Kolar et al. (2010)

C	Runtime	n
$\operatorname{conv}(\mathcal{S})$	super-poly(p)	$\sim p^{0.25} \log(p)$
nuclear norm ball	$p^{1.5}$	$\sim \sqrt{p}$

C	Runtime	n
$\operatorname{conv}(\mathcal{S})$	super-poly(p)	$\sim p^{0.25} \log(p)$
nuclear norm ball	$p^{1.5}$	$\sim \sqrt{p}$

- O What if we use an even weaker relaxation?
 - E.g., (properly scaled) Euclidean ball

C	Runtime	n
$\operatorname{conv}(\mathcal{S})$	super-poly(p)	$\sim p^{0.25} \log(p)$
nuclear norm ball	$p^{1.5}$	$\sim \sqrt{p}$

- O What if we use an even weaker relaxation?
 - E.g., (properly scaled) Euclidean ball

- \circ Require $\mathcal{O}(p)$ samples \Rightarrow Runtime $= np + \mathcal{O}(p) = \mathcal{O}(p^2)$
- In this case, makes sense to throw away data ...

Recall Plot ...

At some stage, throw away data

Some Questions

 In several examples, not too many extra samples required for really simple algorithms

 Approximation ratio might be bad, but doesn't matter as much for statistical inference

 Understand Gaussian complexities of LP/SDP hierarchies in contrast to theoretical CS

Some Questions

- Measuring the quality of approximation of convex sets
 - Approximation ratio is focus in theoretical CS
 - Gaussian complexities of interest in statistical inference

Summary

- Challenges with massive datasets
- Considered simple denoising problem
- Time-data tradeoffs via convex relaxation

- o Future work:
 - Other methods to "weaken" algorithms
 - More complex statistical inference problems