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High-dimensional Data

Gene Global
microarray weather ¥
analysis modeling [ g .

o Statistical inference with many variables
o Data in high-dimensional spaces
o E.g., images, Netflix, protein sequencing, ...



High-dimensional Data
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o A major success story in recent years
— Role of structure: sparsity, low-rank, ...
— Sophisticated computational techniques

o Fundamental limits on n for consistent inference



A New Challenge

n; ® — Massive data
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o Large p + large n

— Social data, financial modeling, ...
o N much larger than fundamental limits
o Significant computational challenge



A Thought Experiment

o Consider a typical inference scenario
— 1 hour for inference task with n = 5000, risk = 0.03
— 20 days for same task with n = 500000, risk = 0.0003

o Suppose we don’t care about such small
improvements in risk

— Statistical models are only approximations to reality

o More data useful for less computation?

— Process larger datasets more coarsely?



Computer Science v.s. Statistics
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Outline

o What can we expect from time-data tradeoffs?

o A simple statistical inference problem

o Convex programming based estimation

o Tradeoffs via convex relaxation



Time-Data Tradeoffs

o Consider an inference problem with fixed risk
o Inference procedures viewed as points in plot

Runtime

Number of samples n



Time-Data Tradeoffs

o Consider an inference problem with fixed risk
o Vertical lines

Classical estimation theory
- well understood

Runtime

Number of samples n



Time-Data Tradeoffs

o Consider an inference problem with fixed risk
o Horizontal lines

Complexity theory lower bounds
Runtime — poorly understood
— depends on computational model

/

Number of samples n




Time-Data Tradeoffs

o Consider an inference problem with fixed risk

Runtime

o Need “weaker” algorithms
for larger datasets

o At some stage, throw away
data

o Tradeoff runtime upper
® © o bounds

— More data means smaller
runtime upper bound

Number of samples n



An Estimation Problem

o Signal x* € S C R? from known (bounded) set
o Noise z ~ N (0, I))xp)

o Observation model

y =X + 0%z

o Observe ni.i.d. samples {y;}:",



Convex Programming Estimator

1<~ . - -
o Sample mean y = - > yi is sufficient statistic
1=1

o Natural estimator

x,(S) = al"g}lclel]ié%) 5y — XHE2 s.t. xe 8

o Convex programming estimator

X, (C) = argg{g%} ||y — XH?2 s.t. xel

— Cisaconvexsetsuchthat S C C



Statistical Performance of Estimator

o Defn 1: The cone of feasible directions into a
convex set C is defined as

T(x",C') = cone{w — x"|w € C'}

y & ¢




Statistical Performance of Estimator

o Defn 1: The cone of feasible directions into a
convex set C is defined as

T(x",C') = cone{w — x"|w € C'}

o Defn 2: The Gaussian (squared) complexity of a
cone T is defined as

g(T)=E| sup (z,0)°
5T 6]l <1




Statistical Performance of Estimator

o Prop: The risk of the estimator x,,(C) is

.
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o g(T(x*,C))
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o Proof: Apply optimality conditions

o Intuition: Only consider error in feasible cone



Statistical Performance of Estimator

o E.g.: the risk of the estimator X,,(R”) s

A 2
E (1% (RP) = x*|I7,] < Zp

n

o Can generalize proposition in several ways
— Obtain better bias-variance tradeoffs
— Similar results for non-Gaussian noise



Weakening via Convex Relaxation

o Prop: The risk of the estimator x,,(C) is
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o g(T(x*,C))
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o Corr: To obtain risk of at most 1,

n > o° g(T(X*, C))



Weakening via Convex Relaxation

o Corr: To obtain risk of at most 1,

n > g g(T(X*,C’))

\ }
|

Monotonic in C

o Key point:

If we have access to larger n, can use larger C




Weakening via Convex Relaxation

If we have access to larger n, can use larger C

= Obtain “weaker” estimation algorithm

AN
T(x*.C)
S : o)




Hierarchy of Convex Relaxations

o If § “algebraic”, then one can obtain family of
outer convex approximations

conv(S) C---C O3 C Cy C ()

— Polyhedral, semidefinite, hyperbolic relaxations
(Sherali-Adams, Parrilo, Lasserre, Garding, Renegar)

o Sets {C;} ordered by computational complexity

— Central role played by lift-and-project %



Hierarchy of Convex Relaxations
conv(S) C---C O3 C Cy C ()

o Concept of lift-and-project
— Sets expressed as projection of affine slice of cone
— Orthant (linear programming)
— PSD cone (semidefinite programming)

o Larger dimensional lifts
— Better approximation
— Greater computational cost



Contrast to Previous Work

o Binary classifier learning

— Decatur et al. [1998], Servedio [2000], Shalev-Shwarz & Srebro
[2008], Perkins & Hallett [2010], Shalev-Shwarz et al. [2012]

— Lots of extra data required for simpler algorithms
— Our examples: modest extra data for simpler algorithms

o Sparse PCA, clustering, network inference
— Amini & Wainwright [2009], Kolar et al. [2011]

o Our work: Emphasis on algorithm weakening

— Convex relaxation: principled, general way to do this



Before we get to examples ...

o How do we calculate runtime?

o Total runtime = np + # ops for projection

/ \

Computing Subsequent
sample mean processing
With more data, With more data,

this increases this decreases



Before we get to examples ...

o Estimating Gaussian complexity

— General techniques: covering numbers, Dudley’s
integral formula (1967), ...

— Usually not sharp

o Thm: If a convex cone T has a dual with relative
volume (1, then

g(T) < 20log(7;;)

o Proof: Appeal to Gaussian isoperimetry




Example 1

o S consists of cut matrices

S = {aa’ | a consists of -

— 1’8}

o E.g., collaborative filtering, clustering

C Runtime n
conv(S) (cut polytope) | super-poly(p) | ci11/D
elliptope >0 C2./D
nuclear norm ball pt C3/D

((31 < < (33)



Example 2

o Banding estimators for covariance matrices
— Bickel-Levina (2007), many others
— Assume known variable ordering

o Stylized problem: let M be known tridiagonal
matrix

o Signal set S = {IIMII' | IT a permutation}

C Runtime n
conv(S) super-poly(p) | c1/plog(p)
scaled /1 norm ball p > log(p) co2/plog(p)

(1 < CQ)




Example 3

o Signal set S consists of all perfect matchings in
complete graph

o E.g., network inference

C Runtime n
conv(S) p° c1,/plog(p)
hypersimplex | p'°log(p) | c21/plog(p)

(1 < CQ)



Example 4

o & consists of all adjacency matrices of graphs
with only a clique on square-root of the nodes

o E.g., sparse PCA, gene expression patterns
o Kolar et al. (2010)

@ Runtime n

conv(S) super-poly(p) | ~ p”?°log(p)

-
nuclear norm ball pl? ~ /D




Example 4

C Runtime n
conv(S) super-poly(p) | ~ p°% log(p)
nuclear norm ball pl? ~ /D

o What if we use an even weaker relaxation?

— E.g., (properly scaled) Euclidean ball




Example 4

C Runtime n
conv(S) super-poly(p) | ~ p°% log(p)
nuclear norm ball pl? ~ /D

o What if we use an even weaker relaxation?
— E.g., (properly scaled) Euclidean ball

o Require O(p) samples = Runtime = np + O(p) = O(p?)
o In this case, makes sense to throw away data ...



Recall Plot ...

o At some stage, throw away
data

Runtime

Number of samples n



Some Questions

o In several examples, not too many extra
samples required for really simple algorithms

o Approximation ratio might be bad, but doesn’t
matter as much for statistical inference

o Understand Gaussian complexities of LP/SDP
hierarchies in contrast to theoretical CS



Some Questions

o Measuring the quality of approximation of
convex sets

— Approximation ratio is focus in theoretical CS
— Gaussian complexities of interest in statistical

inference
X* 2 A
@ ) @ V.S. \\\\\\
_ . Gaussian
Approximation complexity

ratio in CS in statistics



Summary

o Challenges with massive datasets
o Considered simple denoising problem
o Time-data tradeoffs via convex relaxation

o Future work:
— Other methods to “weaken” algorithms
— More complex statistical inference problems



