# Computational and Sample Tradeoffs via Convex Relaxation

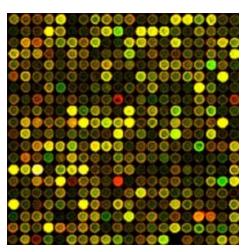
Venkat Chandrasekaran

Caltech

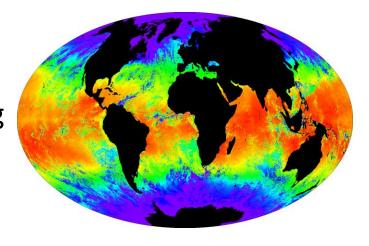
Joint work with Michael Jordan

# **High-dimensional Data**

Gene microarray analysis

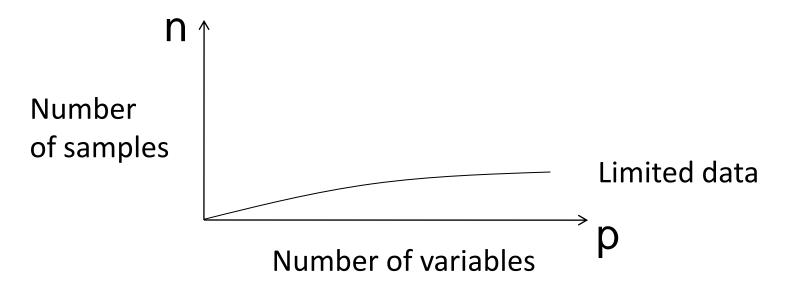


Global weather modeling



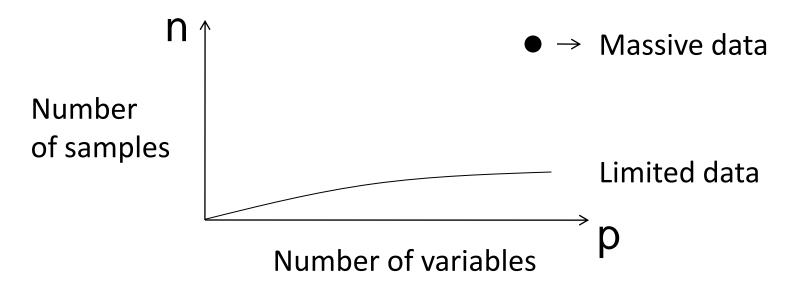
- Statistical inference with many variables
- Data in high-dimensional spaces
- E.g., images, Netflix, protein sequencing, ...

# **High-dimensional Data**



- A major success story in recent years
  - Role of structure: sparsity, low-rank, ...
  - Sophisticated computational techniques
- Fundamental limits on n for consistent inference

# A New Challenge



- Large p + large n
  - Social data, financial modeling, ...
- n much larger than fundamental limits
- Significant computational challenge

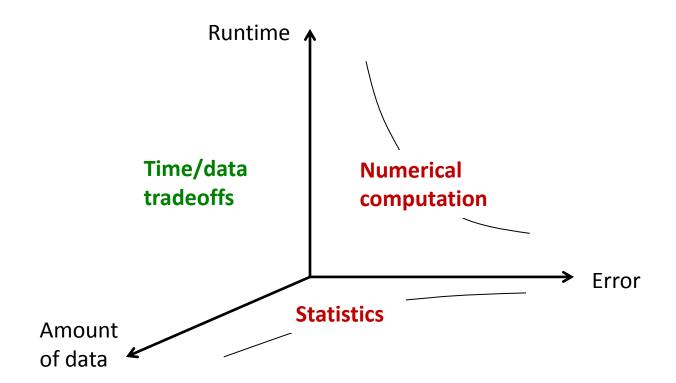
# **A Thought Experiment**

- Consider a typical inference scenario
  - -1 hour for inference task with n = 5000, risk = 0.03
  - 20 days for same task with n = 500000, risk = 0.0003

- Suppose we don't care about such small improvements in risk
  - Statistical models are only approximations to reality

- O More data useful for less computation?
  - Process larger datasets more coarsely?

# **Computer Science v.s. Statistics**



#### **Outline**

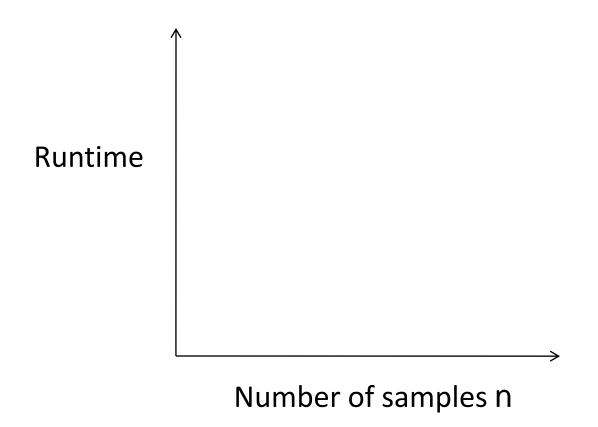
O What can we expect from time-data tradeoffs?

A simple statistical inference problem

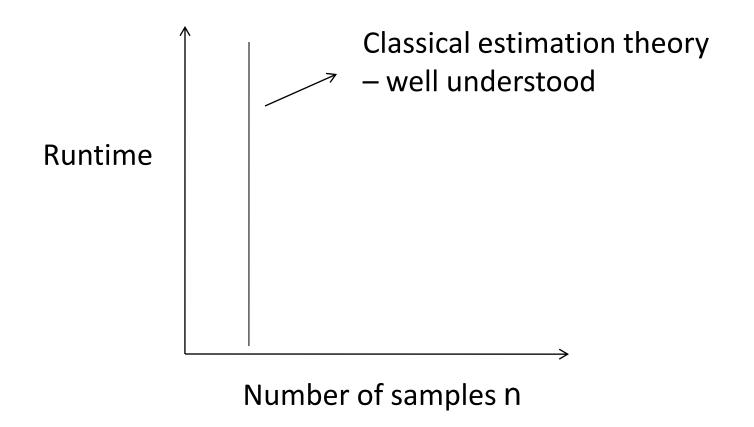
Convex programming based estimation

Tradeoffs via convex relaxation

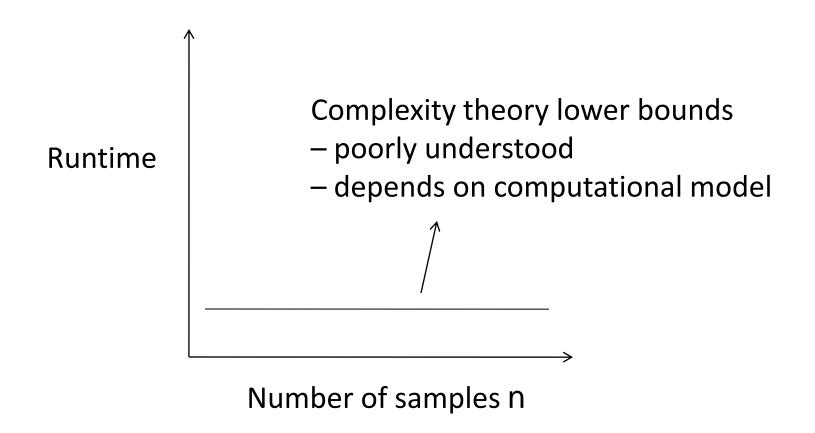
- Consider an inference problem with *fixed* risk
- Inference procedures viewed as points in plot



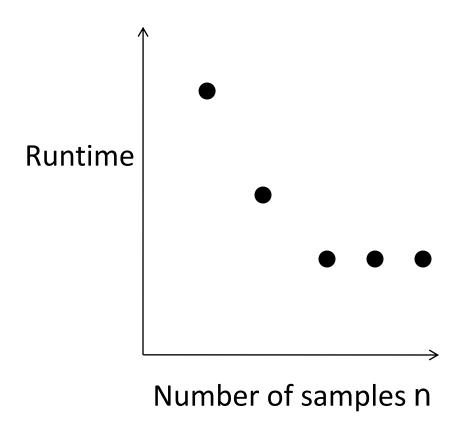
- Consider an inference problem with *fixed* risk
- Vertical lines



- Consider an inference problem with *fixed* risk
- Horizontal lines



Consider an inference problem with *fixed* risk



- Need "weaker" algorithms for larger datasets
- At some stage, throw away data
- Tradeoff runtime *upperbounds* 
  - More data means smaller runtime upper bound

#### **An Estimation Problem**

- $\circ$  Signal  $\mathbf{x}^* \in \mathcal{S} \subset \mathbb{R}^p$  from known (bounded) set
- o Noise  $\mathbf{z} \sim \mathcal{N}(0, I_{p \times p})$

Observation model

$$\mathbf{y} = \mathbf{x}^* + \sigma \mathbf{z}$$

o Observe n i.i.d. samples  $\{y_i\}_{i=1}^n$ 

# **Convex Programming Estimator**

o Sample mean 
$$\bar{\mathbf{y}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{y}_i$$
 is sufficient statistic

Natural estimator

$$\hat{\mathbf{x}}_n(\mathcal{S}) = \arg\min_{\mathbf{x} \in \mathbb{R}^p} \frac{1}{2} \|\bar{\mathbf{y}} - \mathbf{x}\|_{\ell_2}^2 \quad \text{s.t. } \mathbf{x} \in \mathcal{S}$$

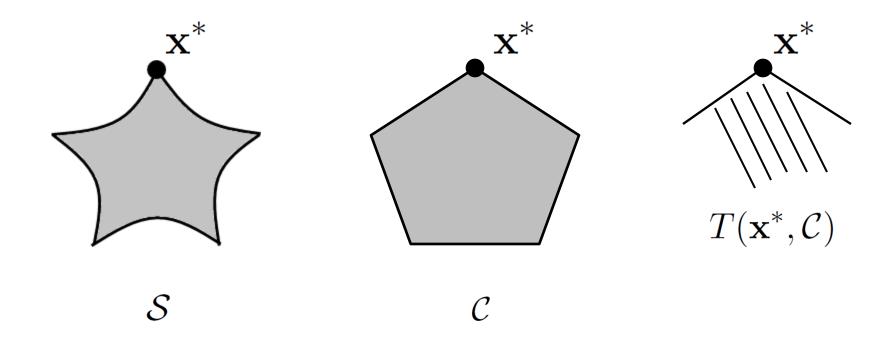
Convex programming estimator

$$\hat{\mathbf{x}}_n(C) = \arg\min_{\mathbf{x} \in \mathbb{R}^p} \frac{1}{2} \|\bar{\mathbf{y}} - \mathbf{x}\|_{\ell_2}^2 \quad \text{s.t. } \mathbf{x} \in C$$

– C is a **convex** set such that  $S \subset C$ 

 Defn 1: The cone of feasible directions into a convex set C is defined as

$$T(\mathbf{x}^*, C) = \text{cone}\{w - \mathbf{x}^* | w \in C\}$$



 Defn 1: The cone of feasible directions into a convex set C is defined as

$$T(\mathbf{x}^*, C) = \text{cone}\{w - \mathbf{x}^* | w \in C\}$$

 Defn 2: The Gaussian (squared) complexity of a cone T is defined as

$$g(T) = \mathbb{E} \left[ \sup_{\delta \in T, \|\delta\|_{\ell_2} \le 1} \langle \mathbf{z}, \delta \rangle^2 \right]$$

 $\circ$  Prop: The risk of the estimator  $\hat{\mathbf{x}}_n(C)$  is

$$\mathbb{E}\left[\|\hat{\mathbf{x}}_n(C) - \mathbf{x}^*\|_{\ell_2}^2\right] \le \frac{\sigma^2}{n} \ g\left(T(\mathbf{x}^*, C)\right)$$

Proof: Apply optimality conditions

Intuition: Only consider error in feasible cone

 $\circ$  E.g.: the risk of the estimator  $\hat{\mathbf{x}}_n(\mathbb{R}^p)$  is

$$\mathbb{E}\left[\|\hat{\mathbf{x}}_n(\mathbb{R}^p) - \mathbf{x}^*\|_{\ell_2}^2\right] \leq \frac{\sigma^2}{n}p$$

- Can generalize proposition in several ways
  - Obtain better bias-variance tradeoffs
  - Similar results for non-Gaussian noise

# **Weakening via Convex Relaxation**

 $\circ$  Prop: The risk of the estimator  $\hat{\mathbf{x}}_n(C)$  is

$$\mathbb{E}\left[\|\hat{\mathbf{x}}_n(C) - \mathbf{x}^*\|_{\ell_2}^2\right] \le \frac{\sigma^2}{n} \ g\left(T(\mathbf{x}^*, C)\right)$$

Corr: To obtain risk of at most 1,

$$n \ge \sigma^2 g\Big(T(\mathbf{x}^*, C)\Big)$$

# Weakening via Convex Relaxation

Corr: To obtain risk of at most 1,

$$n \ge \sigma^2 \ g\Big(T(\mathbf{x}^*, C)\Big)$$

Monotonic in C

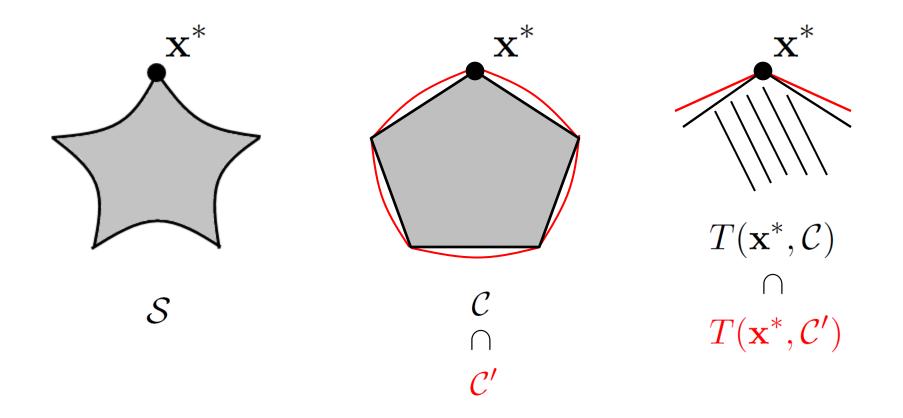
O Key point:

If we have access to larger n, can use larger C

## Weakening via Convex Relaxation

If we have access to larger n, can use larger C

→ Obtain "weaker" estimation algorithm



# **Hierarchy of Convex Relaxations**

 $\circ$  If  $\mathcal{S}$  "algebraic", then one can obtain family of outer convex approximations

$$\operatorname{conv}(\mathcal{S}) \subseteq \cdots \subset C_3 \subset C_2 \subset C_1$$

Polyhedral, semidefinite, hyperbolic relaxations
(Sherali-Adams, Parrilo, Lasserre, Garding, Renegar)

- $\circ$  Sets  $\{C_i\}$  ordered by *computational complexity* 
  - Central role played by lift-and-project

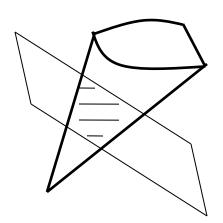


# **Hierarchy of Convex Relaxations**

$$\operatorname{conv}(\mathcal{S}) \subseteq \cdots \subset C_3 \subset C_2 \subset C_1$$

- Concept of lift-and-project
  - Sets expressed as projection of affine slice of cone
  - Orthant (linear programming)
  - PSD cone (semidefinite programming)

- Larger dimensional lifts
  - Better approximation
  - Greater computational cost



#### **Contrast to Previous Work**

- Binary classifier learning
  - Decatur et al. [1998], Servedio [2000], Shalev-Shwarz & Srebro [2008], Perkins & Hallett [2010], Shalev-Shwarz et al. [2012]
  - Lots of extra data required for simpler algorithms
  - Our examples: modest extra data for simpler algorithms
- Sparse PCA, clustering, network inference
  - Amini & Wainwright [2009], Kolar et al. [2011]

- Our work: Emphasis on algorithm weakening
  - Convex relaxation: principled, general way to do this

## Before we get to examples ...

O How do we calculate runtime?

O Total runtime = np + # ops for projection

Computing sample mean

With more data, this *increases* 

Subsequent processing



With more data, this *decreases* 

# Before we get to examples ...

- Estimating Gaussian complexity
  - General techniques: covering numbers, Dudley's integral formula (1967), ...
  - Usually not sharp

 $\circ$  Thm: If a convex cone T has a dual with relative volume  $\mu$  , then

$$g(T) \le 20 \log(\frac{1}{4\mu})$$

Proof: Appeal to Gaussian isoperimetry

 $\circ$  S consists of cut matrices

$$S = \{aa' \mid a \text{ consists of } \pm 1's\}$$

E.g., collaborative filtering, clustering

| C                      | Runtime          | n             |
|------------------------|------------------|---------------|
| conv(S) (cut polytope) | super-poly $(p)$ | $c_1\sqrt{p}$ |
| elliptope              | $p^{2.25}$       | $c_2\sqrt{p}$ |
| nuclear norm ball      | $p^{1.5}$        | $c_3\sqrt{p}$ |

$$(c_1 < c_2 < c_3)$$

- Banding estimators for covariance matrices
  - Bickel-Levina (2007), many others
  - Assume known variable ordering
- Stylized problem: let M be known tridiagonal matrix
- $\circ$  Signal set  $S = \{\Pi M \Pi' \mid \Pi \text{ a permutation}\}$

| C                                  | Runtime          | n                    |
|------------------------------------|------------------|----------------------|
| $\operatorname{conv}(\mathcal{S})$ | super-poly(p)    | $c_1\sqrt{p}\log(p)$ |
| scaled $\ell_1$ norm ball          | $p^{1.5}\log(p)$ | $c_2\sqrt{p}\log(p)$ |

$$(c_1 < c_2)$$

- $\circ$  Signal set  $\mathcal S$  consists of all perfect matchings in complete graph
- E.g., network inference

| C                                  | Runtime          | n                    |
|------------------------------------|------------------|----------------------|
| $\operatorname{conv}(\mathcal{S})$ | $p^5$            | $c_1\sqrt{p}\log(p)$ |
| hypersimplex                       | $p^{1.5}\log(p)$ | $c_2\sqrt{p}\log(p)$ |

$$(c_1 < c_2)$$

- $\circ$   $\mathcal{S}$  consists of all adjacency matrices of graphs with only a clique on square-root of the nodes
- E.g., sparse PCA, gene expression patterns
- Kolar et al. (2010)

| C                                  | Runtime       | n                       |
|------------------------------------|---------------|-------------------------|
| $\operatorname{conv}(\mathcal{S})$ | super-poly(p) | $\sim p^{0.25} \log(p)$ |
| nuclear norm ball                  | $p^{1.5}$     | $\sim \sqrt{p}$         |

| C                                  | Runtime       | n                       |
|------------------------------------|---------------|-------------------------|
| $\operatorname{conv}(\mathcal{S})$ | super-poly(p) | $\sim p^{0.25} \log(p)$ |
| nuclear norm ball                  | $p^{1.5}$     | $\sim \sqrt{p}$         |

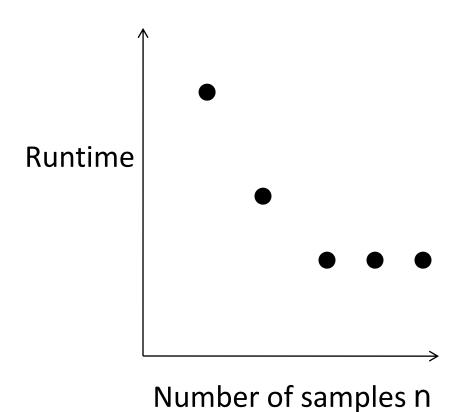
- O What if we use an even weaker relaxation?
  - E.g., (properly scaled) Euclidean ball

| C                                  | Runtime       | n                       |
|------------------------------------|---------------|-------------------------|
| $\operatorname{conv}(\mathcal{S})$ | super-poly(p) | $\sim p^{0.25} \log(p)$ |
| nuclear norm ball                  | $p^{1.5}$     | $\sim \sqrt{p}$         |

- O What if we use an even weaker relaxation?
  - E.g., (properly scaled) Euclidean ball

- $\circ$  Require  $\mathcal{O}(p)$  samples  $\Rightarrow$  Runtime  $= np + \mathcal{O}(p) = \mathcal{O}(p^2)$
- In this case, makes sense to throw away data ...

# Recall Plot ...



At some stage, throw away data

### **Some Questions**

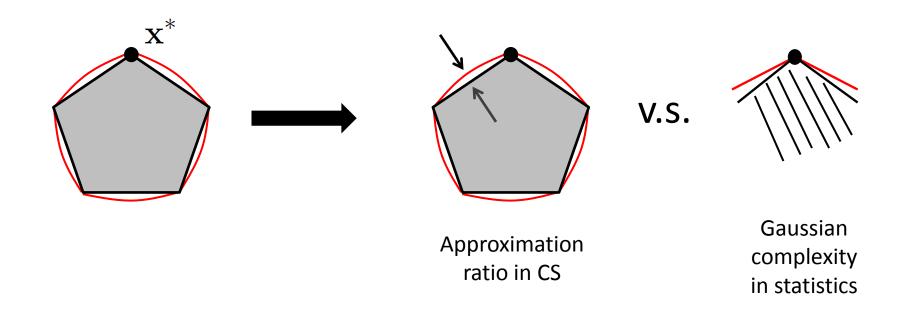
 In several examples, not too many extra samples required for really simple algorithms

 Approximation ratio might be bad, but doesn't matter as much for statistical inference

 Understand Gaussian complexities of LP/SDP hierarchies in contrast to theoretical CS

## **Some Questions**

- Measuring the quality of approximation of convex sets
  - Approximation ratio is focus in theoretical CS
  - Gaussian complexities of interest in statistical inference



## Summary

- Challenges with massive datasets
- Considered simple denoising problem
- Time-data tradeoffs via convex relaxation

- o Future work:
  - Other methods to "weaken" algorithms
  - More complex statistical inference problems