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High-dimensional Data 

o Statistical inference with many variables 

o Data in high-dimensional spaces 

o E.g., images, Netflix, protein sequencing, … 

Gene 
microarray 
analysis 

Global 
weather 
modeling 



High-dimensional Data 

o A major success story in recent years 

‒ Role of structure: sparsity, low-rank, … 

‒ Sophisticated computational techniques 

o Fundamental limits on n for consistent inference 
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A New Challenge 

o Large p + large n 

‒ Social data, financial modeling, … 

o n much larger than fundamental limits 

o Significant computational challenge 
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A Thought Experiment 

o Consider a typical inference scenario 

‒ 1 hour for inference task with n = 5000, risk = 0.03 

‒ 20 days for same task with n = 500000, risk = 0.0003 

 

o Suppose we don’t care about such small 
improvements in risk 

‒ Statistical models are only approximations to reality 

 

o More data useful for less computation? 

‒ Process larger datasets more coarsely? 

 



Computer Science v.s. Statistics 
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Outline 

o What can we expect from time-data tradeoffs? 

 

o A simple statistical inference problem 

 

o Convex programming based estimation 

 

o Tradeoffs via convex relaxation 



Time-Data Tradeoffs 

o Consider an inference problem with fixed risk 

o Inference procedures viewed as points in plot 
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Time-Data Tradeoffs 

o Consider an inference problem with fixed risk 

o Vertical lines 

 

Runtime 

Number of samples n 

Classical estimation theory 
– well understood 



Time-Data Tradeoffs 

o Consider an inference problem with fixed risk 

o Horizontal lines 

 

Runtime 

Number of samples n 

Complexity theory lower bounds 
– poorly understood 
– depends on computational model 



Time-Data Tradeoffs 

o Consider an inference problem with fixed risk 

Runtime 

Number of samples n 

o Need “weaker” algorithms 
for larger datasets 

o At some stage, throw away 
data 

o Tradeoff runtime upper 
bounds 

– More data means smaller 
runtime upper bound 



An Estimation Problem 

o Signal                          from known (bounded) set 

o Noise 

 

o Observation model 

 

 

o Observe n i.i.d. samples  



Convex Programming Estimator 

o Sample mean                         is sufficient statistic 

 

o Natural estimator 

 

 

o Convex programming estimator 

 

 

‒ C is a convex set such that  



Statistical Performance of Estimator 

o Defn 1: The cone of feasible directions into a 
convex set C is defined as 

 

 

 



Statistical Performance of Estimator 

o Defn 1: The cone of feasible directions into a 
convex set C is defined as 

 

 

 

o Defn 2: The Gaussian (squared) complexity of a 
cone T is defined as 



Statistical Performance of Estimator 

o Prop: The risk of the estimator              is  

 

 

 

o Proof: Apply optimality conditions 

 

o Intuition: Only consider error in feasible cone 

 

 



Statistical Performance of Estimator 

o E.g.: the risk of the estimator                 is  

 

 

 

o Can generalize proposition in several ways 

‒ Obtain better bias-variance tradeoffs 

‒ Similar results for non-Gaussian noise 



Weakening via Convex Relaxation 

o Prop: The risk of the estimator              is  

 

 

 

 

o Corr: To obtain risk of at most 1, 

 



Weakening via Convex Relaxation 

o Corr: To obtain risk of at most 1, 

 

 

 

 

 

o Key point: 

  

 
If we have access to larger n, can use larger C 

Monotonic in C 



Weakening via Convex Relaxation 

 

 

  

 

If we have access to larger n, can use larger C 
 
 Obtain “weaker” estimation algorithm 



Hierarchy of Convex Relaxations 

o If       “algebraic”, then one can obtain family of 
outer convex approximations 

 

 

‒ Polyhedral, semidefinite, hyperbolic relaxations 
(Sherali-Adams, Parrilo, Lasserre, Garding, Renegar) 

 

o Sets           ordered by computational complexity 

‒ Central role played by lift-and-project 



Hierarchy of Convex Relaxations 

 

 

o Concept of lift-and-project 

‒ Sets expressed as projection of affine slice of cone 

‒ Orthant (linear programming) 

‒ PSD cone (semidefinite programming) 

 

o Larger dimensional lifts 

‒ Better approximation 

‒ Greater computational cost 

 



Contrast to Previous Work 

o Binary classifier learning 
‒ Decatur et al. [1998], Servedio [2000], Shalev-Shwarz & Srebro 

[2008], Perkins & Hallett [2010], Shalev-Shwarz et al. [2012] 

‒ Lots of extra data required for simpler algorithms 

‒ Our examples: modest extra data for simpler algorithms 

o Sparse PCA, clustering, network inference 
‒ Amini & Wainwright [2009], Kolar et al. [2011] 

 

o Our work: Emphasis on algorithm weakening 

‒ Convex relaxation: principled, general way to do this 

 



Before we get to examples … 

o How do we calculate runtime? 

 

o Total runtime = np  +  # ops for projection 

 

Computing 
sample mean 

Subsequent 
processing 

With more data, 
this increases 
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Before we get to examples … 

o Estimating Gaussian complexity 

‒ General techniques: covering numbers, Dudley’s 
integral formula (1967), … 

‒ Usually not sharp 

 

o Thm: If a convex cone T has a dual with relative 
volume      , then 

 

 

o Proof: Appeal to Gaussian isoperimetry 



Example 1 

o       consists of cut matrices 

 

 

o E.g., collaborative filtering, clustering 

 



Example 2 

o Banding estimators for covariance matrices 

‒ Bickel-Levina (2007), many others 

‒ Assume known variable ordering 

o Stylized problem: let M be known tridiagonal 
matrix 

o Signal set  



Example 3 

o Signal set      consists of all perfect matchings in 
complete graph 

o E.g., network inference 

 

 

 

 



Example 4 

o     consists of all adjacency matrices of graphs 
with only a clique on square-root of the nodes 

o E.g., sparse PCA, gene expression patterns 

o Kolar et al. (2010) 

 

 

 

 



Example 4 

 

 

 

o What if we use an even weaker relaxation? 

‒ E.g., (properly scaled) Euclidean ball 



Example 4 

 

 

 

o What if we use an even weaker relaxation? 

‒ E.g., (properly scaled) Euclidean ball 

 

o   

o In this case, makes sense to throw away data … 



Recall Plot … 

Runtime 

Number of samples n 

o At some stage, throw away 
data 



Some Questions 

o In several examples, not too many extra 
samples required for really simple algorithms 

 

o Approximation ratio might be bad, but doesn’t 
matter as much for statistical inference 

 

o Understand Gaussian complexities of LP/SDP 
hierarchies in contrast to theoretical CS 



Some Questions 

o Measuring the quality of approximation of 
convex sets 

‒ Approximation ratio is focus in theoretical CS 

‒ Gaussian complexities of interest in statistical 
inference 

v.s. 

Approximation 
ratio in CS 

Gaussian 
complexity 
in statistics 



Summary 

o Challenges with massive datasets 

o Considered simple denoising problem 

o Time-data tradeoffs via convex relaxation 

 

o Future work: 

‒ Other methods to “weaken” algorithms 

‒ More complex statistical inference problems 


