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9’ Performance-based online
= advertising

« Performance based online advertising
— A form of online advertising that has a direct measurable financial goal associated
— CPC is a predominant pricing model for sponsored search and content match
— Click prediction (CTR) is critical in CPC-based auction
— eCPM prediction shares the same challenge as CTR prediction

 Challenges in CTR measurement in performance based advertising
system

— The marketplace is very dynamic. New ads come in at hourly basis.
— Historical CTR measurement is often sparse and unreliable
— User fatigue. Same ads repeatedly to the same users

— Low economic efficiency. Over-exposing for some advertisers and under-exposing for
some others
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9’ Exploitation vs. exploration
« (EE) trade-off

o Short term: maximize revenue from current knowledge
(exploitation)

e Long term: learn from unknown ad space, and improve
performance in the future (exploration)

« Primarily studied in reinforcement learning

— Ad placement: an extension to multi-armed bandit problem
« Select a small number of ads as action
* Receive a user feedback (click or non-click) as reward
» Maximize accumulated reward

* No systematic study of short-term and long-term effects of

EE algorithms in the context of dynamic performance based
online advertising
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9’ Two common EE strategies

e g-greedy
— With probability 1-¢, choose the best action
— With probability €, choose any other action ur’formly
— Optimal € is difficult to find

— € needs to be adjus e to D advertising
marketplace
q _ Balance EE

* t-gecreasin tradeoff adaptively

— € decreaes In response to the

— Focus on exp data dynamics DTOTeo ater

— Not desirgb

* Old ads expire and ds em/ge
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9’ Our approach (1)
= E&-greedy with EG update

o Extend e-greedy by updating € dynamically

— Not necessarily decreasing

— Sample ¢ from a finite set of candidates at each iteration

— Candidate probabilities updated via Exponetiated Gradient (EG)
» Increase its probability if a candidate leads to click

Algorithm 2 The e-greedy algorithm with the Exponenti-
ated Gradient update

Lpp<1l/Tandwy, <1, k=1,---,T
2: fori=1to N do
3:  Sample d from Discrete(p1,--- ,pr)
:  Run Algorithm 1 with ¢4
Receive a click feedback ¢; from the user

T[Cif(kzd)_kﬁ})’ k=1,---,T
k

4
5
6: wi < wiexp (
7
8:

end for
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Our approach (2)
confidence-based exploration

* Improve random exploration aspect of ¢-
greedy

— Not desirable to explore ads randomly

* Do not waste opportunities on the
established bad performers

* Focus on ads that might lead to
higher revenue in the long run

— Introduce confidence metric of
performance measure

 Decide which ads need to be
explored.

» Serve as a dynamic switch between
exploitation and exploration.

* When the confidence increases to a
certain level, some exploration
budget will be automatically shifted to
exploitation.

Algorithm 3 The Confidence-based EE alg. for advertising

= R R Al ey

: F < {ai1,---,ar} {the final ranking list F'}
P < {} {the promotlonal queue P}
fori=7r+1tondo
if z; < w then
pi <= 1 — tanh(z;/b)
else
pi <=0
end if
end for
Sample ¢ ads from {ar+1,---

{Pr1,--

,Gn} with probabilities
,pr.} and append the q ads to P

: repeat

Sample z from Bernoulli(e)
if 2 =0 then

a=POP(A), F<FU{a}ifa¢ F
else

a=POP(P), F«< FU{a}ifa¢ F
end if

: until P or A is empty
: F<FUPUA
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9’ Simulation and experiments
y

e Evaluate the long-term effects of EE algorithms

— Take time to explore unknown space and discover new ads with good
CTR

— During such a long time period, CTR may change significantly
— Speed up iterations to demonstrate the results faster

e Design an offline simulation framework
— Get more accurate evaluation
— Mimic emitting the online events using real event logs

— Set up controlled experiment buckets to perform apple-to-apple

comparisons between a pure exploitation baseline and various EE
algorithms.
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9’ Evaluation metrics
¥

* Ad reach of performance history

— # of (page,ad) pairs in the statistics table with sufficient impressions
— Positively correlated with CTR estimation accuracy

— With increased coverage, we select and rank ads from a larger pool

e Average expected CTR

— Actual CTR changes abruptly over iterations for random click
feedback

— The ratio between # of expected clicks and # of impressions
— Calculate the average expected CTR over every 100 iterations
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9’ Experiment results: ad reach
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Experiment results: avg
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9! Summary

* Proposed two approaches adaptively balance EE trade-off
— g-greedy with Expoinitated Gradient update

— Confidence-based exploration

* Designed an offline simulation framework
— A controlled environment mimicking the online ads selection and click feedbacks

— Compared different EE strategies. Our approaches perform superiorly in ad reach and
expected CTR measures

« Several findings of short-term/long-term effects of EE algorithms.
— The ad reach convergence rate is un-sensitive to € in e-greedy due to data sparsity
— The converged CTR increases as € decreases in g-greedy

— The g-greedy-EG has faster convergence rate and the higher CTR than e-greedy when
the ad space is under-discovered.
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