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•Multicore
• asynchronous optimization with shared state

•Multiple machines
• exact synchronization (Yahoo LDA)
• approximate synchronization
• dual decomposition
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Practical Distributed Inference
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http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/
en//people/jeff/stanford-295-talk.pdf

Slide courtesy of Jeff Dean

The Joys of Real Hardware
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Scaling problems
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• Data (lower bounds)
– >10 Billion documents (webpages, e-mails, advertisements, tweets)

– >100 Million users on Google, Facebook, Twitter, Yahoo, Hotmail

– >1 Million days of video on YouTube

– >10 Billion images on Facebook

• Processing capability for single machine 1TB/hour
But we have much more data

• Parameter space for models is big for a single machine (but not too much)
Personalize content for many millions of users

• Need to process data on many cores and many machines simultaneously
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Some Problems

• Good old-fashioned supervised learning
(classification, regression, tagging, entity extraction, ...)

• Graph factorization
(latent variable estimation, social recommendation, discovery)

• Structure inference
(clustering, topics, hierarchies, DAGs, whatever else your NP Bayes friends 
have)

• Example use case - combine information from generic webpages, 
databases, human generated data, semistructured tables into knowledge 
about entities.

8
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How do we solve it at 
scale?

this talk
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Multicore parallelism
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Multicore Parallelism

• Many processor cores
– Decompose into separate tasks
– Good Java/C++ tool support

• Shared memory
– Exact estimates - requires locking of neighbors (see e.g. Graphlab)

Good if problem can be decomposed cleanly (e.g. Gibbs sampling in large 
model)

– Exact updates but delayed incorporation - requires locking of state 
Good if delayed update is of little consequence (e.g. Yahoo LDA, Yahoo online)

– Hogwild updates - no locking whatsoever - requires atomic state
Good if collision probability is low
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• Delayed updates
(round robin for data parallelism, aggregation tree for parameter 
parallelism)

• Online template
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Stochastic Gradient Descent
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data parallel parameter parallel

minimize
w

�

i

fi(w)

Input: scalar ⇥ > 0 and delay ⇤
for t = ⇤ + 1 to T + ⇤ do

Obtain ft and incur loss ft(wt)
Compute gt := ⇥ft(wt) and set �t = 1

�(t�⇥)

Update wt+1 = wt � �tgt�⇥

end for
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Speedup on TREC
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Smola and Narayanamurthy, 2010

LDA Multicore Inference

•Decouple multithreaded sampling and updating (almost) 
avoids stalling for locks in the sampler

•Joint state table
–much less memory required
–samplers synchronized (10 docs vs. millions delay)

•Hyperparameter update via stochastic gradient descent
•No need to keep documents in memory (streaming)
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Smola and Narayanamurthy, 2010
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• Sequential collapsed Gibbs sampler, separate state table
Mallet (Mimno et al. 2008) - slow mixing, high memory load, many iterations

• Sequential collapsed Gibbs sampler (parallel)
Yahoo LDA (Smola and Narayanamurthy, 2010) - fast mixing, many iterations

• Sequential stochastic gradient descent (variational, single logical thread)
VW LDA (Hoffman et al, 2011) - fast convergence, few iterations, dense

• Sequential stochastic sampling gradient descent (only partly variational)
Hoffman, Mimno, Blei, 2012 - fast convergence, quite sparse, single logical thread
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General strategy

• Shared state space
• Delayed updates from cores
• Proof technique is usually to show that the problem hasn’t changed too 
much during the delay (in terms of interactions).

• More work
– Macready, Siapas and Kauffman, 1995

Criticality and Parallelism in Combinatorial Optimization

– Low, Gonzalez, Kyrola, Bickson, Guestrin and Hellerstein, 2010
Shotgun for l1

16
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This was easy ...
what if we need many 
machines?
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This was easy ...
what if we need many 
machines?
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Parameter Server30,000 ft view
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diagram from Ramakrishnan, Sakrejda, Canon, DoE 2011

Why (not) MapReduce?
• Map(key, value)
process instances on a subset of the data / emit aggregate statistics

• Reduce(key, value)
aggregate for all the dataset - update parameters

• This is a parameter exchange mechanism (simply repeat MapReduce)
good if you can make your algorithm fit (e.g. distributed convex online solvers)

• Can be slow to propagate updates between machines & slow convergence
(e.g. a really bad idea in clustering - each machine proposes different clustering)
Hadoop MapReduce loses the state between mapper iterations

21
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General parallel algorithm template


• Clients have local copy of parameters to be estimated
• P2P is infeasible since O(n2) connections
(see Asuncion et al. for amazing tour de force)

• Synchronize* with parameter server
– Reconciliation protocol 

average parameters, lock variables, turnstile counter
– Synchronization schedule 

asynchronous, synchronous, episodic
– Load distribution algorithm

single server, uniform distribution, fault tolerance, recovery

client

server
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General parallel algorithm template


client

server

client syncs to 
many masters

master serves 
many clientscomplete graph is bad for network

use randomized messaging to fix it

Thursday, January 10, 13
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Desiderata

•Variable and load distribution

•Large number of objects (a priori unknown)

•Large pool of machines (often faulty)

•Assign objects to machines such that

•Object goes to the same machine (if possible)

•Machines can be added/fail dynamically 

•Consistent hashing (elements, sets, proportional)

•Symmetric, dynamically scalable, fault tolerant 

•for large scale inferences

•for real time data sketches

24
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Karger et al. 1999, Ahmed et al. 2011

Random Caching Trees
• Cache / synchronize an object
• Uneven load distribution
• Must not generate hotspot

• For given key, pick random order of machines
• Map order onto tree / star via BFS ordering

25
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Karger et al. 1999, Ahmed et al. 2011

Random Caching Trees

26

• Cache / synchronize an object
• Uneven load distribution
• Must not generate hotspot

• For given key, pick random order of machines
• Map order onto tree / star via BFS ordering

(Karger et al. 1999 - ‘Akamai’ paper)
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Distributed Hash Table
• Fixing the O(m) lookup

– Assign machines to ring via hash h(m)

– Assign keys to ring

– Pick machine nearest to key to the left

• O(log m) lookup
• Insert/removal only affects neighbor
(however, big problem for neighbor)

• Uneven load distribution
(load depends on segment size)

• Insert machine more than once to fix this
(do not use messy Cassandra-style manual balancing)

• For k term replication, simply pick the k leftmost machines (skip 
duplicates)

ring of N keys

28
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Exact Synchronization
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Motivation - Latent Variable Models

global
state

data
local
state

30

Thursday, January 10, 13



Source: place source info here

Distribution

global
state

data local
state

copy
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Example - User Profiling

data

local state

global state

Vanilla LDA User profiling

global state
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Example - User Profiling
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local state

global state

Vanilla LDA User profiling

global state
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Distribution

global
replica

rack

cluster
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Distribution

global
replica

rack

cluster
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Ahmed et al., 2012

Synchronization
•Child updates local state
– Start with common state
– Child stores old and new state
– Parent keeps global state

•Transmit differences asynchronously
– Inverse element for difference
– Abelian group for commutativity (sum, log-sum, cyclic group, exponential families)

local to global global to local

x x+ (xglobal � x

old)

x

old  x

global

�  x� x

old

x

old  x

x

global  x

global + �
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Ahmed et al., 2012

Synchronization

local to global global to local
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x
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global
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x

global  x
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•Naive approach (dumb master)
– Global is only (key,value) storage
– Local node needs to lock/read/write/unlock master
– Needs a 4 TCP/IP roundtrips - latency bound
•Better solution (smart master)
– Client sends message to master / in queue / master incorporates it
– Master sends message to client / in queue / client incorporates it
– Bandwidth bound (>10x speedup in practice)
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Weak scaling (more data = more machines)
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Exact Synchronization in a Nutshell
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• Each machine computes local updates
• Inference relative to local (stale) version of the model
• Send local changes to global
• Receive global changes at local client

• Only send / receive aggregate changes
• Easy change relative to single machine implementation
• Not fault tolerant (need to restart system if single machine fails)
• Delays may destroy convergence properties
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Approximate Synchronization&
Dual Decomposition
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Properties

• Fault tolerant
– Restart server(s) from last backup state

– No need to restart entire system when individual machines fail

• Works well for deep belief networks
– See Google Brain project

Paper by Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le, 
Mark Z. Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Andrew Y. Ng

• Fails to converge for graph factorization (tried and tested ...)
– Initial convergence but parameters diverge subsequently

– Caused by delay in parameter updates
(local updates overcompensate changes to parameter values)

41
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Acceleration (single CPU vs. 32 machines)
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Weak scaling (more data = more machines)
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Even more parameter server variants
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• Graphlab (PowerGraph decomposition and updates)
• Facebook parameter server for EP updates
• Google brain project
• Graph factorization

... your algorithm here ...

•From January 2013 on at CMU
Open source version (ping me if you want to contribute)
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• Multicore
• stochastic gradient descent 
(Hogwild, Slow learners are fast, ...)

• Multiple machines• exact synchronization• approximate synchronization &
dual decomposition 
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