Scaling with the Parameter Server
Google Variations on a Theme

Alexander Smola
Google Research & CMU
alex.smola.org

Thanks

Amr Nino Joey
Ahmed Shervashidze Gonzalez
Shravan Sergiy Markus

Narayanamurthy Matyusevich Weimer

Google

Practical Distributed Inference

* Multicore

e asynchronous optimization with shared state
* Multiple machines

e exact synchronization (Yahoo LDA)

e approximate synchronization

e dual decomposition

GO-\/gle

Commodity Hardware

.l i
iy

*High Performance Computing

jiabl i i e
Very reliable, custom built, expensive :
e ————— e —] v's's's's's sy

's's's's's'n'sl|

'\ '

ILILILII L

‘‘‘‘

444444

;;;;;;

Consumer hardware —N

Cheap, efficient, easy to replicate,
Not very reliable, deal with it!

Google

The Joys of Real Hardware

Typical first year for a new cluster:

~0.5 overheating (power down most machines in <5 mins, ~1-2 days to recover)
~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hours to come back)
~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hours)
~1 network rewiring (rolling ~5% of machines down over 2-day span)

~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)

~5 racks go wonky (40-80 machines see 50% packetloss)

~8 network maintenances (4 might cause ~30-minute random connectivity losses)
~12 router reloads (takes out DNS and external vips for a couple minutes)

~3 router failures (have to immediately pull traffic for an hour)

~dozens of minor 30-second blips for dns

~1000 individual machine failures

~thousands of hard drive failures

slow disks, bad memory, misconfigured machines, flaky machines, etc.

Slide courtesy of Jeff Dean

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-talk.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-talk.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-talk.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-talk.pdf

Google

Scaling problems

* Data (lower bounds)
— >10 Billion documents (webpages, e-mails, advertisements, tweets)
— >100 Million users on Google, Facebook, Twitter, Yahoo, Hotmail
— >1 Million days of video on YouTube

— >10 Billion images on Facebook

* Processing capability for single machine 1TB/hour
But we have much more data

* Parameter space for models is big for a single machine (but not too much)
Personalize content for many millions of users

* Need to process data on many cores and many machines simultaneously

Google

Some Problems

« Good old-fashioned supervised learning
(classification, regression, tagging, entity extraction, ...)

* Graph factorization
(latent variable estimation, social recommendation, discovery)

« Structure inference
(clustering, topics, hierarchies, DAGs, whatever else your NP Bayes friends

have)

* Example use case - combine information from generic webpages,
databases, human generated data, semistructured tables into knowledge

about entities.

Google

Some Problems

« Good old-fashioned supervised learning
(classification, regression, tagging, entity extraction, ...)

* Graph factorization
(latent variable estimation, social recommendation, discovery)

« Structure inference
(clustering, topics, hierarchies, DAGs, whatever else your NP Bayes friends

have)

* Example use case - combine information from generic webpages,
databases, human generated data, semistructured tables into knowledge

about entities.

How do we solve it at
scale?

Google

Some Problems

« Good old-fashioned supervised learning
(classification, regression, tagging, entity extraction, ...)

* Graph factorization
(latent variable estimation, social recommendation, disco' __

« Structure inference
(clustering, topics, hierarchies, DAGs, whatever else your NP Bayes friends

have)

* Example use case - combine information from generic webpages,
databases, human generated data, semistructured tables into knowledge

about entities.

How do we solve it at
scale?

Google

Multicore Parallelism

 Many processor cores

— Decompose into separate tasks

f(\‘ —
o

data
source

— Good Java/C++ tool support

*Shared memory

— Exact estimates - requires locking of neighbors (see e.g. Graphlab)
Good if problem can be decomposed cleanly (e.g. Gibbs sampling in large
model)

— Exact updates but delayed incorporation - requires locking of state
Good if delayed update is of little consequence (e.g. Yahoo LDA, Yahoo online)

— Hogwild updates - no locking whatsoever - requires atomic state
Good if collision probability is low

Google

Stochastic Gradient Descent

I >' ! | >
I | ‘ ———— data ——* | | § updater
source [——=p
loss - data — X
[part n

data
source gradient part n

data parallel parameter parallel

* Delayed updates
(round robin for data parallelism, aggregation tree for parameter

parallelism)
- Online template mm}wmlzeri(w)
1

Input: scalar o0 > 0 and delay 7
fort=7+1to1T +7do
Obtain f; and incur loss f;(w;)
Compute g; := V fi(w;) and set n, = J(tl_T)
Update w41 = wy — e ge—r

end for \

Google

Guarantees

* Worst case guarantee (Zinkevich, Langford, Smola, 2010)
SGD with delay T on T processors is no worse than sequential SGD

E(f;(w)] < ARLV7T

 Lower bound is tight
Proof: send same instance T times

* Better bounds with iid data
— Penalty is covariance in features
—Vanishing penalty for smooth f(w)

2 4 8
E[R[X]] < |28.3R*H + S RL+ gR2HlogT T+ gRL\/T.

* Works even (better) if we don’t lock between updates
(Recht, Re, Wright, 2011) Hogwild

Google

Speedup on TREC

speedup in %

450
400
350
300
250
200
150
100
50
0

3 4

number of cores

Google

LDA Multicore Inference

count
updater

file
combiner

lagnosti
diag OS ¢S output to |
topics
file
optlmlzatlon

joint state table

eDecouple multithreaded sampling and updating (almost)
avoids stalling for locks in the sampler

eJoint state table

-much less memory required

-samplers synchronized (10 docs vs. millions delay)
eHyperparameter update via stochastic gradient descent
eNo need to keep documents in memory (streaming)

Google

LDA Multicore Inference

diagnostics
count output to :
: : & : topics
combiner updater o file
E optimization

topics

joint state table

* Sequential collapsed Gibbs sampler, separate state table
Mallet (Mimno et al. 2008) - slow mixing, high memory load, many iterations

» Sequential collapsed Gibbs sampler (parallel)
Yahoo LDA (Smola and Narayanamurthy, 2010) - fast mixing, many iterations

» Sequential stochastic gradient descent (variational, single logical thread)
VW LDA (Hoffman et al, 2011) - fast convergence, few iterations, dense

* Sequential stochastic sampling gradient descent (only partly variational)
Hoffman, Mimno, Blei, 2012 - fast convergence, quite sparse, single logical thread

Google

General strategy

* Shared state space

* Delayed updates from cores

* Proof technique is usually to show that the problem hasn’t changed too
much during the delay (in terms of interactions).

* More work

— Macready, Siapas and Kauffman, 1995
Criticality and Parallelism in Combinatorial Optimization

— Low, Gonzalez, Kyrola, Bickson, Guestrin and Hellerstein, 2010
Shotgun for |1

C-Ougle

- >

This was easy ...

what if we need many
machines?

P - P - P -

C-Ougle

- >

This was easy ...

what if we need many
machines?

- P < P - , >

> > > _ > _ >
B > > > > > > > R

C-Ougle

This was easy ...

es?’

if we need many
N

hat
ach

W
M

A AANA

[T

A AAA

[T

A AAA

[T

A AAA

[T

A AANA

(11

A AAA

[T

A AAA

[T

A AANA

111

A AAA

[T

A AAA

[T

A AANA

[T

A A AA

[T

A AAA

(11

A A AA

RN

A AANA

[T

A AAA

[T

19

Source: place source info here

Google
Why (not) MapReduce?

* Map(key, value)
process instances on a subset of the data / emit aggregate statistics

* Reduce(key, value)
aggregate for all the dataset - update parameters

* This is a parameter exchange mechanism (simply repeat MapReduce)
good if you can make your algorithm fit (e.g. distributed convex online solvers)

* Can be slow to propagate updates between machines & slow convergence

(e.g. a really bad idea in clustering - each machine proposes different clustering)
Hadoop MapReduce loses the state between mapper iterations

Input list Input list

Mapping function Reducing function

Output list Output value

diagram from Ramakrishnan, Sakrejda, Canon, DoE 2011

Google

General parallel algorithm template

 Clients have local copy of parameters to be estimated

«P2P is infeasible since O(n?%) connections
(see Asuncion et al. for amazing tour de force)

Synchronize with parameter server O

— Reconciliation protocol
average parameters, lock variables, turnstile counteO

—Synchronization schedule
asynchronous, synchronous, episodic O Q
—Load distribution algorithm O

single server, uniform distribution, fault tolerance, r

Google

General parallel algorithm template

client syncs to
PEINANESES

master serves

complete graph is bad for networ many. clients

use randomized messaging to fix it

Google

Desiderata

eVariable and load distribution

elLarge number of objects (a priori unknown)

elLarge pool of machines (often faulty)
e Assign objects to machines such that
eObject goes to the same machine (if possible)
eMachines can be added/fail dynamically
e Consistent hashing (elements, sets, proportional)
eSymmetric, dynamically scalable, fault tolerant
efor large scale inferences

efor real time data sketches

Google

Random Caching Trees

* Cache / synchronize an object
* Uneven load distribution

* Must not generate hotspot

* For given key, pick random order of machines

 Map order onto tree / star via BFS ordering

®

Google

Random Caching Trees

* Cache / synchronize an object
* Uneven load distribution

* Must not generate hotspot

* For given key, pick random order of machines

* Map order onto tree / star via BFS ordering

Go.\)gle
Argmin Hash

* Consistent hashing

m(key) = argmin h(key, m)
meM
— Uniform distribution over machine pool M

— Fully determined by hash function h. No need to ask master

— If we add/remove machine m’ all but O(1/m) keys remain

1
Pr{m(key) =m'} = —
m
* Consistent hashing with k replications

m(key, k) = k srglea}/l[est h(key, m)

— |If we add/remove a machine only O(k/m) need reassigning (also self repair)

* Cost to assign is O(m). This can be expensive for 1000 servers

Google
Distributed Hash Table

* Fixing the O(m) lookup
— Assign machines to ring via hash h(m)
— Assign keys to ring
— Pick machine nearest to key to the left
* O(log m) lookup

* Insert/removal only affects neighbor
(however, big problem for neighbor)

* Uneven load distribution
(load depends on segment size)

* Insert machine more than once to fix this
(do not use messy Cassandra-style manual balancinC™ s

* For k term replication, simply pick the k leftmost machines (skip
duplicates)

Google
Distributed Hash Table

* Fixing the O(m) lookup
— Assign machines to ring via hash h(m)
— Assign keys to ring
— Pick machine nearest to key to the left
* O(log m) lookup

* Insert/removal only affects neighbor
(however, big problem for neighbor)

* Uneven load distribution
(load depends on segment size)

* Insert machine more than once to fix this
(do not use messy Cassandra-style manual balancinC™ s

* For k term replication, simply pick the k leftmost machines (skip
duplicates)

Google
Distributed Hash Table

* Fixing the O(m) lookup
— Assign machines to ring via hash h(m)
— Assign keys to ring
— Pick machine nearest to key to the left
* O(log m) lookup

* Insert/removal only affects neighbor
(however, big problem for neighbor)

* Uneven load distribution
(load depends on segment size)

* Insert machine more than once to fix this
(do not use messy Cassandra-style manual balancinC™ s

* For k term replication, simply pick the k leftmost machines (skip
duplicates)

Google
Distributed Hash Table

* Fixing the O(m) lookup
— Assign machines to ring via hash h(m)
— Assign keys to ring | =
— Pick machine nearest to key to the left
* O(log m) lookup

* Insert/removal only affects neighbor
(however, big problem for neighbor)

* Uneven load distribution
(load depends on segment size)

* Insert machine more than once to fix this
(do not use messy Cassandra-style manual balancinC™ s

* For k term replication, simply pick the k leftmost machines (skip
duplicates)

Google
Distributed Hash Table

* Fixing the O(m) lookup
— Assign machines to ring via hash h(m)
— Assign keys to ring
— Pick machine nearest to key to the left
* O(log m) lookup

* Insert/removal only affects neighbor
(however, big problem for neighbor)

* Uneven load distribution
(load depends on segment size)

* Insert machine more than once to fix this
(do not use messy Cassandra-style manual balancinC™ s

* For k term replication, simply pick the k leftmost machines (skip
duplicates)

Google

Motivation - Latent Variable Models

Global Local

30

Google

Distribution

Processor Local State
Global eplica

Source: place source info here 31

Google

Preserving the polytope

Abelian group
* Delayed count updates
m m
p(X|po, mo) = /dﬁp(Hluo,mo) Hp(il?z'\@) — ¥ Zﬁb(fﬂz‘)\ﬂo,mo
i=1 i=1

— Collapsed representation for exponential families
(bad things can happen otherwise - negative counts, indefinite covariances)

— Need to keep track of aggregate state of random variables
* Exchangeable random process
— See also Church by Mansinghka, Tenenbaum, Roy etc.

— Need to maintain statistic of the aggregate

Delays are OK. Approximation is not!

C-Ougle

Example - User Profiling

Vanilla LDA Q

global state

local state

o

C-Ougle

Example - User Profiling

Vanilla LDA User profiling

global state

local state

Tolcle

©
o
oo i

@
o
o
©
o
O

9
!
ofie
©

Google

Distribution

Global

Processor lLLocal State

Replica

o

i € [k]

o
e
ofNe

i

j € [k]

@

1 € [m]

l

€

[p]

Google

Distribution

Processor Local State
(Global eplica

@)
. _ 1 m

Google

Synchronization

eChild updates local state
- Start with common state
- Child stores old and new state
- Parent keeps global state
eTransmit differences asynchronously
- Inverse element for difference
- Abelian group for commutativity (sum, log-sum, cyclic group, exponential families

local to global O O O global to local
@ ZC‘ ZCOld

O T 7 ‘ @lobal ‘ $old)
CEglobal xglobal‘d O O O 7° ajglobal

Google

Synchronization

eNaive approach (dumb master)

- Global is only (key,value) storage

- Local node needs to lock/read/write/unlock master

- Needs a 4 TCP/IP roundtrips - latency bound

eBetter solution (smart master)

- Client sends message to master / in queue / master incorporates it
- Master sends message to client / in queue / client incorporates it

- Bandwidth bound (>10x speedup in practice)

local to global O O O global to local
@ ZC‘ ZCOld

O T ZIZ" @lobal ‘ xold)
xglobal xglobal,g O Q O pold gelobal

Google

Weak scaling (more data = more machines)

I

30t

Fixed #machines=100

N
(62}

N
o

Time per iteration in Minutes
o o

Linearly scaling #machines: 100,300,...

N

O 1 1 1] L 1 |
200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Users (Documents) in Millions

Google

Weak scaling (more data = more machines)

I

30t

Fixed #machines=100

N
(62}

N
o

Time per iteration in Minutes
o o

Linearly scaling #machines: 100,300,...

N

O 1 1 1] L 1 |
200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Users (Documents) in Millions.

Google

Exact Synchronization in a Nutshell

* Each machine computes local updates
* Inference relative to local (stale) version of the model
* Send local changes to global

* Receive global changes at local client

*Only send / receive aggregate changes
* Easy change relative to single machine implementation
* Not fault tolerant (need to restart system if single machine fails)

* Delays may destroy convergence properties

Google

Motivation - Distributed Optimization

* Distributed optimization problem

flz) =) fi(x)
 Decompose over p processors ’
* Make progress on subproblems fz (Zz) per processor

* Exchange updates with parameter server (difference & state)

* Retrieve related state from parameter server and update locally
(do not assume that the x; yield an orthogonal decomposition)

* Difference to exact parameter server:
stochastic gradient descent updates

Google

Properties

 Fault tolerant
— Restart server(s) from last backup state

— No need to restart entire system when individual machines fail

* Works well for deep belief networks

— See Google Brain project
Paper by Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le,
Mark Z. Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Andrew Y. Ng

* Fails to converge for graph factorization (tried and tested ...)
— Initial convergence but parameters diverge subsequently

— Caused by delay in parameter updates
(local updates overcompensate changes to parameter values)

Google

Dual Decomposition to the rescue

* Optimization problem

minimize g fi(z)
xXr
i

or equivalently minimize g fi(x;) subject to x; = 2
i<
* Lagrangian relaxation

L(zi,2,A) =Y filz) + A ||z — 2|

update x, z and Lagrange multipliers. Include equality constraint if
needed.

* This explicitly deals with different values in local state and global consensus.

Google

Synchronous Variant (MapReduce

 Lagrangian relaxation

L(wi, 2, A) = Z filx;))\Z |lzi — 2|

* Local step (Map step)
Solve local minimization problems on each machine

i s i 2
minimize f;(x;) + A ||z; — 2|
Lq
* Global step (Reduce step + intermediate)
— Aggregate local solutions and average to compute new value of z
— Update Lagrange multiplier

— Rebroadcast to local clients

Google

Asynchronous Variant

e Lagrangian relaxation -
L(@i 2, \) = Y filwi) + A |1z — |

* Local step (cohtinous)
Solve local minimization problems (e.g. via SGD) and send updates to server

minimize f;(z;) + X ||z — 2|7
* Global step (continous) v
— Aggregate local solutions asynchronously from clients
— Update Lagrange multiplier

— Rebroadcast global state to local clients

Google

Convergence (synchronous vs. asynchronous)

11 Full Dataset: 200M nodes
8 | | |

= = = Asynchronus optimization
- Synchronus optimization

Objective Function

o | | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000

Time in minutes (linear scale)

Google

Convergence (synchronous vs. asynchronous)

11 Full Dataset: 200M nodes
g X 10
L (R | T T I T T T T | I e (| T T T T T [[
------- = = = Asynchronus optimization
LM —— Synchronus optimization
& ~~~
7— ss
S
s
6 (-

Objective Function
o1
|

N
|

2 | | | | | | - | | 1 | | | |1 | | | 1 1 | | I | | | | | | | |asmy)e] | | [
107 107" 10° 10’ 10 10
Time in minutes (log scale)

Google

Acceleration (single CPU vs. 32 machines)

32M Nodes

3 i T T T TT i T T T T

- = = = Multi-Machine Asynchronus (32 machines)
205k T el = Single machine 1

29

2.85

2.8

275

2.7

Average test erorr

2.65

2.6

2.55

2-5 1 1 1 L1111 I 1 1 1 1 1111 I 1 1 1 1 111 I 1 1 1 1 1111 I
10° 10" 10° 10' 10
Time in minutes (Log Scale)

Google

Weak scaling (more data = more machines)
Scalability

14 I

= € = Multi-Machine Asynchronus
=—6— Single machine

12

—_
o

(0¢]

(o)}

Linearly scaling #machines: 4,8,16,..

Time per epoch (minutes)

N

32 64 128
60 80 100 120 140 160 180 200

Number of nodes in Millions

Google

Even more parameter server variants

* Graphlab (PowerGraph decomposition and updates)
* Facebook parameter server for EP updates
* Google brain project

« Graph factorization

... your algorithm here ...

*From January 2013 on at CMU
Open source version (ping me if you want to contribute)

