
Alexander Smola
Google Research & CMU
alex.smola.org

Scaling with the Parameter Server
Variations on a Theme

Thursday, January 10, 13

Source: place source info here

Joey
Gonzalez

Shravan
Narayanamurthy

Markus
Weimer

Sergiy
Matyusevich

Amr
Ahmed

2

Thanks

Nino
Shervashidze

Thursday, January 10, 13

Source: place source info here

•Multicore
• asynchronous optimization with shared state

•Multiple machines
• exact synchronization (Yahoo LDA)
• approximate synchronization
• dual decomposition

3

Practical Distributed Inference

Thursday, January 10, 13

MotivationData & Systems

4

MITT’S

Thursday, January 10, 13

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/
en//people/jeff/stanford-295-talk.pdf

Slide courtesy of Jeff Dean

The Joys of Real Hardware

6

Thursday, January 10, 13

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-talk.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-talk.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-talk.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-talk.pdf

Source: place source info here

Scaling problems

7

• Data (lower bounds)
– >10 Billion documents (webpages, e-mails, advertisements, tweets)

– >100 Million users on Google, Facebook, Twitter, Yahoo, Hotmail

– >1 Million days of video on YouTube

– >10 Billion images on Facebook

• Processing capability for single machine 1TB/hour
But we have much more data

• Parameter space for models is big for a single machine (but not too much)
Personalize content for many millions of users

• Need to process data on many cores and many machines simultaneously

Thursday, January 10, 13

Source: place source info here

Some Problems

• Good old-fashioned supervised learning
(classification, regression, tagging, entity extraction, ...)

• Graph factorization
(latent variable estimation, social recommendation, discovery)

• Structure inference
(clustering, topics, hierarchies, DAGs, whatever else your NP Bayes friends
have)

• Example use case - combine information from generic webpages,
databases, human generated data, semistructured tables into knowledge
about entities.

8

Thursday, January 10, 13

Source: place source info here

Some Problems

• Good old-fashioned supervised learning
(classification, regression, tagging, entity extraction, ...)

• Graph factorization
(latent variable estimation, social recommendation, discovery)

• Structure inference
(clustering, topics, hierarchies, DAGs, whatever else your NP Bayes friends
have)

• Example use case - combine information from generic webpages,
databases, human generated data, semistructured tables into knowledge
about entities.

8

How do we solve it at
scale?

Thursday, January 10, 13

Source: place source info here

Some Problems

• Good old-fashioned supervised learning
(classification, regression, tagging, entity extraction, ...)

• Graph factorization
(latent variable estimation, social recommendation, discovery)

• Structure inference
(clustering, topics, hierarchies, DAGs, whatever else your NP Bayes friends
have)

• Example use case - combine information from generic webpages,
databases, human generated data, semistructured tables into knowledge
about entities.

8

How do we solve it at
scale?

this talk

Thursday, January 10, 13

Multicore parallelism

9

MITT’S

Thursday, January 10, 13

Source: place source info here

Multicore Parallelism

• Many processor cores
– Decompose into separate tasks
– Good Java/C++ tool support

• Shared memory
– Exact estimates - requires locking of neighbors (see e.g. Graphlab)

Good if problem can be decomposed cleanly (e.g. Gibbs sampling in large
model)

– Exact updates but delayed incorporation - requires locking of state
Good if delayed update is of little consequence (e.g. Yahoo LDA, Yahoo online)

– Hogwild updates - no locking whatsoever - requires atomic state
Good if collision probability is low

10

loss
gradient

data
source

x

Thursday, January 10, 13

• Delayed updates
(round robin for data parallelism, aggregation tree for parameter
parallelism)

• Online template

Source: place source info here

Stochastic Gradient Descent

loss
gradient

data
source

x data

source
data

part n

x

part n

updater

11

data parallel parameter parallel

minimize
w

�

i

fi(w)

Input: scalar ⇥ > 0 and delay ⇤
for t = ⇤ + 1 to T + ⇤ do

Obtain ft and incur loss ft(wt)
Compute gt := ⇥ft(wt) and set �t = 1

�(t�⇥)

Update wt+1 = wt � �tgt�⇥

end for

Thursday, January 10, 13

Source: place source info here

Speedup on TREC

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 2 3 4 5 6 7

P
e
rc

e
n
t
S

p
e
e
d
u
p

Threads

Performance on TREC Data

13

number of cores

sp
ee

du
p

in
 %

Thursday, January 10, 13

Smola and Narayanamurthy, 2010

LDA Multicore Inference

•Decouple multithreaded sampling and updating (almost)
avoids stalling for locks in the sampler

•Joint state table
–much less memory required
–samplers synchronized (10 docs vs. millions delay)

•Hyperparameter update via stochastic gradient descent
•No need to keep documents in memory (streaming)

tokens

topics

file

combiner

count

updater

diagnostics

&

optimization

output to

file
topics

sampler
sampler

sampler
sampler

sampler

Intel Threading Building Blocks

joint state table

14

Thursday, January 10, 13

Smola and Narayanamurthy, 2010

LDA Multicore Inference

tokens

topics

file

combiner

count

updater

diagnostics

&

optimization

output to

file
topics

sampler
sampler

sampler
sampler

sampler

Intel Threading Building Blocks

joint state table

15

• Sequential collapsed Gibbs sampler, separate state table
Mallet (Mimno et al. 2008) - slow mixing, high memory load, many iterations

• Sequential collapsed Gibbs sampler (parallel)
Yahoo LDA (Smola and Narayanamurthy, 2010) - fast mixing, many iterations

• Sequential stochastic gradient descent (variational, single logical thread)
VW LDA (Hoffman et al, 2011) - fast convergence, few iterations, dense

• Sequential stochastic sampling gradient descent (only partly variational)
Hoffman, Mimno, Blei, 2012 - fast convergence, quite sparse, single logical thread

Thursday, January 10, 13

Source: place source info here

General strategy

• Shared state space
• Delayed updates from cores
• Proof technique is usually to show that the problem hasn’t changed too
much during the delay (in terms of interactions).

• More work
– Macready, Siapas and Kauffman, 1995

Criticality and Parallelism in Combinatorial Optimization

– Low, Gonzalez, Kyrola, Bickson, Guestrin and Hellerstein, 2010
Shotgun for l1

16

Thursday, January 10, 13

Source: place source info here

This was easy ...
what if we need many
machines?

17

Thursday, January 10, 13

Source: place source info here

This was easy ...
what if we need many
machines?

18

Thursday, January 10, 13

Source: place source info here

This was easy ...
what if we need many
machines?

19

Thursday, January 10, 13

Parameter Server30,000 ft view

20

MITT’S

Thursday, January 10, 13

diagram from Ramakrishnan, Sakrejda, Canon, DoE 2011

Why (not) MapReduce?
• Map(key, value)
process instances on a subset of the data / emit aggregate statistics

• Reduce(key, value)
aggregate for all the dataset - update parameters

• This is a parameter exchange mechanism (simply repeat MapReduce)
good if you can make your algorithm fit (e.g. distributed convex online solvers)

• Can be slow to propagate updates between machines & slow convergence
(e.g. a really bad idea in clustering - each machine proposes different clustering)
Hadoop MapReduce loses the state between mapper iterations

21

Thursday, January 10, 13

Source: place source info here 22

General parallel algorithm template

• Clients have local copy of parameters to be estimated
• P2P is infeasible since O(n2) connections
(see Asuncion et al. for amazing tour de force)

• Synchronize* with parameter server
– Reconciliation protocol

average parameters, lock variables, turnstile counter
– Synchronization schedule

asynchronous, synchronous, episodic
– Load distribution algorithm

single server, uniform distribution, fault tolerance, recovery

client

server

Thursday, January 10, 13

Source: place source info here 23

General parallel algorithm template

client

server

client syncs to
many masters

master serves
many clientscomplete graph is bad for network

use randomized messaging to fix it

Thursday, January 10, 13

Source: place source info here

Desiderata

•Variable and load distribution

•Large number of objects (a priori unknown)

•Large pool of machines (often faulty)

•Assign objects to machines such that

•Object goes to the same machine (if possible)

•Machines can be added/fail dynamically

•Consistent hashing (elements, sets, proportional)

•Symmetric, dynamically scalable, fault tolerant

•for large scale inferences

•for real time data sketches

24

Thursday, January 10, 13

Karger et al. 1999, Ahmed et al. 2011

Random Caching Trees
• Cache / synchronize an object
• Uneven load distribution
• Must not generate hotspot

• For given key, pick random order of machines
• Map order onto tree / star via BFS ordering

25

Thursday, January 10, 13

Karger et al. 1999, Ahmed et al. 2011

Random Caching Trees

26

• Cache / synchronize an object
• Uneven load distribution
• Must not generate hotspot

• For given key, pick random order of machines
• Map order onto tree / star via BFS ordering

(Karger et al. 1999 - ‘Akamai’ paper)

Thursday, January 10, 13

Source: place source info here

Distributed Hash Table
• Fixing the O(m) lookup

– Assign machines to ring via hash h(m)

– Assign keys to ring

– Pick machine nearest to key to the left

• O(log m) lookup
• Insert/removal only affects neighbor
(however, big problem for neighbor)

• Uneven load distribution
(load depends on segment size)

• Insert machine more than once to fix this
(do not use messy Cassandra-style manual balancing)

• For k term replication, simply pick the k leftmost machines (skip
duplicates)

ring of N keys

28

Thursday, January 10, 13

Source: place source info here

Distributed Hash Table
• Fixing the O(m) lookup

– Assign machines to ring via hash h(m)

– Assign keys to ring

– Pick machine nearest to key to the left

• O(log m) lookup
• Insert/removal only affects neighbor
(however, big problem for neighbor)

• Uneven load distribution
(load depends on segment size)

• Insert machine more than once to fix this
(do not use messy Cassandra-style manual balancing)

• For k term replication, simply pick the k leftmost machines (skip
duplicates)

ring of N keys

28

Thursday, January 10, 13

Source: place source info here

Distributed Hash Table
• Fixing the O(m) lookup

– Assign machines to ring via hash h(m)

– Assign keys to ring

– Pick machine nearest to key to the left

• O(log m) lookup
• Insert/removal only affects neighbor
(however, big problem for neighbor)

• Uneven load distribution
(load depends on segment size)

• Insert machine more than once to fix this
(do not use messy Cassandra-style manual balancing)

• For k term replication, simply pick the k leftmost machines (skip
duplicates)

ring of N keys

28

Thursday, January 10, 13

Source: place source info here

Distributed Hash Table
• Fixing the O(m) lookup

– Assign machines to ring via hash h(m)

– Assign keys to ring

– Pick machine nearest to key to the left

• O(log m) lookup
• Insert/removal only affects neighbor
(however, big problem for neighbor)

• Uneven load distribution
(load depends on segment size)

• Insert machine more than once to fix this
(do not use messy Cassandra-style manual balancing)

• For k term replication, simply pick the k leftmost machines (skip
duplicates)

ring of N keys

28

Thursday, January 10, 13

Source: place source info here

Distributed Hash Table
• Fixing the O(m) lookup

– Assign machines to ring via hash h(m)

– Assign keys to ring

– Pick machine nearest to key to the left

• O(log m) lookup
• Insert/removal only affects neighbor
(however, big problem for neighbor)

• Uneven load distribution
(load depends on segment size)

• Insert machine more than once to fix this
(do not use messy Cassandra-style manual balancing)

• For k term replication, simply pick the k leftmost machines (skip
duplicates)

ring of N keys

28

Thursday, January 10, 13

Exact Synchronization

29

MITT’S

Thursday, January 10, 13

Source: place source info here

Motivation - Latent Variable Models

global
state

data
local
state

30

Thursday, January 10, 13

Source: place source info here

Distribution

global
state

data local
state

copy

31

Thursday, January 10, 13

Source: place source info here

Example - User Profiling

data

local state

global state

Vanilla LDA User profiling

global state

33

Thursday, January 10, 13

Source: place source info here

Example - User Profiling

data

local state

global state

Vanilla LDA User profiling

global state

33

Thursday, January 10, 13

Source: place source info here

Distribution

global
replica

rack

cluster

34

Thursday, January 10, 13

Source: place source info here

Distribution

global
replica

rack

cluster

34

Thursday, January 10, 13

Ahmed et al., 2012

Synchronization
•Child updates local state
– Start with common state
– Child stores old and new state
– Parent keeps global state

•Transmit differences asynchronously
– Inverse element for difference
– Abelian group for commutativity (sum, log-sum, cyclic group, exponential families)

local to global global to local

x x+ (xglobal � x

old)

x

old x

global

� x� x

old

x

old x

x

global x

global + �

35

Thursday, January 10, 13

Ahmed et al., 2012

Synchronization

local to global global to local

x x+ (xglobal � x

old)

x

old x

global

� x� x

old

x

old x

x

global x

global + �

36

•Naive approach (dumb master)
– Global is only (key,value) storage
– Local node needs to lock/read/write/unlock master
– Needs a 4 TCP/IP roundtrips - latency bound
•Better solution (smart master)
– Client sends message to master / in queue / master incorporates it
– Master sends message to client / in queue / client incorporates it
– Bandwidth bound (>10x speedup in practice)

Thursday, January 10, 13

Source: place source info here

Weak scaling (more data = more machines)

37

Thursday, January 10, 13

Source: place source info here

Weak scaling (more data = more machines)

37

Thursday, January 10, 13

Source: place source info here

Exact Synchronization in a Nutshell

38

• Each machine computes local updates
• Inference relative to local (stale) version of the model
• Send local changes to global
• Receive global changes at local client

• Only send / receive aggregate changes
• Easy change relative to single machine implementation
• Not fault tolerant (need to restart system if single machine fails)
• Delays may destroy convergence properties

Thursday, January 10, 13

Approximate Synchronization&
Dual Decomposition

39

MITT’S

Thursday, January 10, 13

Source: place source info here

Properties

• Fault tolerant
– Restart server(s) from last backup state

– No need to restart entire system when individual machines fail

• Works well for deep belief networks
– See Google Brain project

Paper by Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le,
Mark Z. Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Andrew Y. Ng

• Fails to converge for graph factorization (tried and tested ...)
– Initial convergence but parameters diverge subsequently

– Caused by delay in parameter updates
(local updates overcompensate changes to parameter values)

41

Thursday, January 10, 13

Source: place source info here

Acceleration (single CPU vs. 32 machines)

47

10−2 10−1 100 101 102 103
2.5

2.55

2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.95

3

Time in minutes (Log Scale)

Av
er

ag
e

te
st

 e
ro

rr
32M Nodes

Multi−Machine Asynchronus (32 machines)
Single machine

Thursday, January 10, 13

Source: place source info here

Weak scaling (more data = more machines)

48

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

Number of nodes in Millions

Ti
m

e
pe

r e
po

ch
 (m

in
ut

es
)

Scalability

Multi−Machine Asynchronus
Single machine

Linearly scaling #machines: 4,8,16,..

1286432168

Thursday, January 10, 13

Source: place source info here

Even more parameter server variants

49

• Graphlab (PowerGraph decomposition and updates)
• Facebook parameter server for EP updates
• Google brain project
• Graph factorization

... your algorithm here ...

•From January 2013 on at CMU
Open source version (ping me if you want to contribute)

Thursday, January 10, 13

• Multicore
• stochastic gradient descent
(Hogwild, Slow learners are fast, ...)

• Multiple machines• exact synchronization• approximate synchronization &
dual decomposition

50

MITT’S

Thursday, January 10, 13

