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Fleet wide analysis

How to integrate all information
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and intuitive

 
manner?
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Anomaly detection
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Mining Framework
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Pair wise Similarity Measure
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Common Subsequence

 Solves a convex and quadratic optimization problem. 


 

Can appropriately introduce a mixture of kernels in the convex 
cost function.


 

Enables using non-linear kernel functions to learn complex separating 
planes.
 Results a model that can be used to classify new examples.

For more information, please see 

B. Schölkopf, A. Smola, R. Williamson, 
and P. L. Bartlett. New support vector 
algorithms. Neural Computation, 12, 
2000, 1207-1245. 
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Optimization problem
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One class SVMs training algorithms require solving the quadratic 
problem

Dual form

Linear equality 
constraint

Bounds on design 
variables

Control parameter

: Lagrange multipliers of the primal QP problem



Anomaly scores

Data points with            will 
be the support vectors

Value of h: degree of anomalousness

Sign of h: if negative – outlier
if positive - normal

Indicator
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Decision boundary is determined only by margin and non-margin 
support vectors obtained by solving the QP problem



Experiment
Simulation data

Type 1 –

 

(Missing event) Flaps were not 
extended to normal full deployment at 
landing.

Type 2 -

 

(Extra event) Landing gear was 
retracted after being deployed on final 
approach.

Type 3 –

 

(Out of order event) Gear deployed 
before initial flaps below flaps limit. 

Type 4 –

 

(Continuous anomaly) High bank 
angles or rate of descent below 1,000 ft.
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Case study: FOQA anomaly 
detection

•
 

The traditional methods cannot 
detect and monitor these anomalous 
activities that may have occurred 
simultaneously  and are 
heterogeneous in nature.

Touch down
point



Conclusion
What can we summarize ?

1.

 

Support flights safety experts
2.

 

Schedule maintenance

Application

.…

 

anomaly detection on multivariate 
mixed attributes where discrete 
sequences may influence the 
system dynamics which is 
reflected on the continuous data 
streams. 

Performs

.. High detection rate on most 
operationally significant 
anomalies in fleet wide 
analysis on large datasets

.. Discover some “unknown 
unknowns”

Highlights



Thank you 
•

 
Poster ID: 59

•
 

Contact and feedback:
–

 
Santanu Das

Santanu.Das−1@nasa.gov

•
 

More resources on Dashlink
 

website: 
https://c3.ndc.nasa.gov/dl/topic/multiple-kernel-learning-based-

 heterogeneous-algorithm-2/

•
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