Google Fastfood

O(n log d) feature maps for kernels

Tamas Sarlos, Quoc Le, Alex Smola

Google

The trouble with kernels

« Kernel expansion flz) = Z;O%k(%ﬂf)

 Number of basis functions increases linearly with sample size
Inevitable unless you have essentially noise free cases (Steinwart &
Christmann)

* Approximate expansions are slow (d dimensions, n features, m samples)

e s o™ o e —
O(m?2d) O(md) O(md) O(md)

Naive

Reduced set O(m?d) O(nd) O(md) O(nd)
Low rank O(mnd) O(nd) O(nd) O(nd)
NEET ey O(mnd) O(nd) O(nd) O(nd)

Sinks

Google

The trouble with kernels

« Kernel expansion flz) = Z;O%k(%ﬂf)

 Number of basis functions increases linearly with sample size
Inevitable unless you have essentially noise free cases (Steinwart &
Christmann)

* Approximate expansions are slow (d dimensions, n features, m samples)

e s o™ o e —
O(m?2d) O(md) O(md) O(md)

Naive

Reduced set O(m?d) O(nd) O(md) O(nd)
Low rank O(mnd) O(nd) O(nd) O(nd)
Random Kitcher O(mnd) O(nd) O(nd) O(nd)

Fastfood O(mnlogd) O(nlogd) O(n) O(n)

Google
Random Kitchen Sinks (Rahimi & Recht,

* RBF kernels have Fourier representation (Bochner, 1932)
k’(ll?, Qj/) _ /dp(w)€i<w,x>6—i<w,m >
* Draw frequencies from p(w) and approximate kernel

L= it oy —ilews o
k(z,2') = — E et(@irm) o =i{wir') where wji ~ p(w)
n -
— Special case - for Gaussian RBFs wel drhw terms from a Gaussian

(Fourier transform of Gaussian)

—In general, draw w from spherically symmetric distribution (e.g. Gauss) and
rescale

* Dominant cost

Qz is O(nd) CPU and O(nd) RAM

Google
Key ldea

« Gaussian matrix M costs O(n d) per multiplication

* Approximate by ‘fake’ Gaussian matrix (for moment assume that M is
square)

M = SHGIIHB

— S is random diagonal scaling matrix (deals with spectrum)

— H is Hadamard matrix admitting O(d log d) multiply

H H
Hsy,, = " " | and H; =1
2N Hn _Hn 1
— G is random diagonal Gaussian matrix N

—[1is random permutation matrix

— B is random binary {-1, 1} diagonal matrix
* Multiplication is O(d log d). Storage is O(d). Draw independent blocks. .

Google

Properties of a7 = sHGIHEB

* Correct expectation
—Ignore S - now each row is drawn from iid Gaussians
— Unfortunately all rows have same length, given bHGH2
Frob

— Use S to randomize lengths (and adapt to different spectra)

* Covariance between features is well controlled

Theorem 4 (Low Variance) Letv =x—2x" and de-

note by ¥;(v) = cos(d™z |HGIIH Bv);) the jth random
feature for j € {1...d}. Then for each j we have

1

Var [(0)] = ¢ (1— 11 (16)

Var | S50 | < 5 (1= I) " ac(el) (7

where C(a) = 120 [6_0‘2 + O‘;}

Google

Matrix approximation error

|:|.5|— | | | | |
——— Random Kitchen Sinks
N 45 |- —i— our method (Fourier features) [H
our method (Hadamard features)
0.4 .
0355 .
S
E 0.5k -
C
g
@ .25 -
= - r - -1t
= LA tC 1 rieuristl
5 L)
5 0ok i
s e 5 v
0.15H -
|
|
01 F, .
"
ll'u
0.05F o _
|:|]]]]] *
0 200 400 GO0 gl 1000 1200

number of basis functions

Google

Generalization Performance (UCI CPU

HM = E

13

12

11

10

»— Random Kitchen Sinks
our method (Fourier features)

—— our method (Hadamard features)

] I
0 1000 2000 3000 4000 5000 &000 7000 g000

number of basis functions

Qoo

Google

Speed & accuracy

Dataset m d | Exact | Nystrom Random | Fastfood | Fastfood
Kitchen Sinks FFT
Insurance Company (COIL2000) 5,822 85 | 0.231 0.232 0.266 0.266 0.264
Wine Quality 4, 080 11 | 0.819 0.797 0.740 0.721 0.740
Parkinson Telemonitor 4,700 21 | 0.059 0.058 0.054 0.052 0.054
CPU 6, 554 21 | 7.271 6.758 7.103 4.544 7.366
Relative location of CT slices (axial) 42,800 384 n.a. 60.683 49.491 58.425 43.858
KEGG Metabolic Reaction Network 51,686 27 n.a. 17.872 17.837 17.826 17.818
Year Prediction MSD 463,715 90 n.a. 0.113 0.123 0.106 0.115
Forest 522,910 54 n.a. 0.837 0.840 0.838 0.840
Y - WOI KS 1I11C
IMucil fastici 1: €
(no diiference,
d n | Fastfood RKS Speedup | RAM
1,024 16,384 | 0.00058s 0.0139s 24x 200x
4,096 32,768 | 0.00136s 0.1224s 90x | 1024x
8,192 65,536 | 0.00268s 0.5360s 200x | 2048x

Google
Summary

 Extensible to other kernels
— Easy to sample spectral distribution
— Easy to learn ‘multiple kernels’ since dimensions are so cheap
 Extensible to localized basis functions
— Instantiate Neal’s 1994 paper (GP and Neural Network equivalence)
— Matrix valued functions
* [terate
— Stack several layers
— Backprop is very cheap since inverse Hadamard is O(d log d)
* k(x,x’) is now expensive (invariance theorem of difficulty ...)
* Covariance operators are not explicitly available

* Never store explicit feature map (too much memory required)

