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The trouble with kernels

• Kernel expansion
•Number of basis functions increases linearly with sample size
Inevitable unless you have essentially noise free cases (Steinwart & 
Christmann)
• Approximate expansions are slow (d dimensions, n features, m samples)
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Random Kitchen Sinks (Rahimi & Recht, 

• RBF kernels have Fourier representation (Bochner, 1932)

•Draw frequencies from p(w) and approximate kernel

– Special case - for Gaussian RBFs we draw terms from a Gaussian 
(Fourier transform of Gaussian)

– In general, draw w from spherically symmetric distribution (e.g. Gauss) and 
rescale

•Dominant cost
•Can we accelerate this? Does this work for other problems, too?
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Key Idea

•Gaussian matrix M costs O(n d) per multiplication
• Approximate by ‘fake’ Gaussian matrix (for moment assume that M is 
square)

– S is random diagonal scaling matrix (deals with spectrum)

– H is Hadamard matrix admitting O(d log d) multiply

– G is random diagonal Gaussian matrix

– Π is random permutation matrix

– B is random binary {-1, 1} diagonal matrix

•Multiplication is O(d log d). Storage is O(d). Draw independent blocks.
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Properties of

•Correct expectation
– Ignore S - now each row is drawn from iid Gaussians

– Unfortunately all rows have same length, given by 

– Use S to randomize lengths (and adapt to different spectra)

•Covariance between features is well controlled
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3.3. Decorrelation Guarantees

The next step is to show that the feature map is well
behaved also in terms of decorrelation between rows of
V . The current section addresses this in some detail.
We only review the real part of the feature map, i.e. the
cosine. The imaginary part is completely analogous.

Theorem 4 (Low Variance) Let v = x�x0 and de-
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To prove the first claim re realize that here j = t and
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Matrix approximation error
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Figure 1. Absolute kernel approximation errors (top) and
relative kernel approximation errors (bottom) of di↵erent
methods with respect to the expansion dimension n. The
errors are averaged over 4000 samples of uniformly random
vectors (d = 10).

Exact RBF uses the exact RBF kernel. This is possi-
ble on all but the largest datasets where the kernel
matrix does not fit into memory.

Nystrom uses the Nystrom approximation of the ker-
nel matrix (Williams & Seeger, 2001). These
methods have received recent interest due to the
improved approximation guarantees of (Jin et al.,
2011) which indicate that approximation rates
faster than O(n� 1

2 ) are achievable. Hence, the-
oretically, the Nystrom method should have a sig-
nificant accuracy advantage over Random Kitchen
Sinks and Fastfood when using the same number
of basis functions. We set n = 2048.

Random Kitchen Sinks uses the the Gaussian ran-
dom projection matrices described by (Rahimi &
Recht, 2009). We use n = 2, 048 basis functions.

Fastfood (“Hadamard features” in the figures) uses
the random matrix given by SHG⇧HB, again
with n = 2, 048 dimensions.

FFT Fastfood (“Fourier features” in the figures)
uses a variant of the above construction. Instead

Figure 2. Test RMSE on CPU dataset with respect to the
number of basis functions. As number of basis functions
increases, the quality of regression generally improves.

of combining two Hadamard matrices, a permu-
tation and Gaussian scaling, we use a permu-
tation in conjunction with a Fourier Transform
matrix (i.e., with the random matrix given by
⇧FB). The intuition is that by picking a random
subset of columns from a (unitary) Fourier ma-
trix, we end up with vectors that are almost spa-
tially isotropic, albeit with slightly more dispersed
lengths than in Fastfood. We use this heuristic for
comparison purposes.

The results of the comparison are given in Table 1.
As can be seen, there is virtually no di↵erence be-
tween the exact kernel, the Nystrom approximation,
Random Kitchen Sinks and Fastfood. Somewhat sur-
prisingly the Fourier features work very well. This
indicates that the concentration of measure e↵ects im-
pacting Gaussian RBF kernels may actually be coun-
terproductive at their extreme.

In Figure 2, we also show regression performances as
a function of number of basis functions (n). A rep-
resentative result is shown with the CPU dataset and
demonstrates that it is necessary to have a large n
in order to learn highly nonlinear functions. Interest-
ingly, although Fourier features do not seem to approx-
imate the kernel RBF function, it performs compared
to other variants and improves as n increases.

4.2. Speed of kernel computations

In the previous experiments, we observe that Fastfood
is on par with exact kernel computation, the Nystrom
method, and Random Kitchen Sinks. The key point,
however, is to establish whether the algorithm o↵ers
computational savings.

FFT heuristic



Generalization Performance (UCI CPU 

7

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Fastfood — Computing Hilbert Space Expansions in loglinear time

Figure 1. Absolute kernel approximation errors (top) and
relative kernel approximation errors (bottom) of di↵erent
methods with respect to the expansion dimension n. The
errors are averaged over 4000 samples of uniformly random
vectors (d = 10).

Exact RBF uses the exact RBF kernel. This is possi-
ble on all but the largest datasets where the kernel
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the random matrix given by SHG⇧HB, again
with n = 2, 048 dimensions.

FFT Fastfood (“Fourier features” in the figures)
uses a variant of the above construction. Instead

Figure 2. Test RMSE on CPU dataset with respect to the
number of basis functions. As number of basis functions
increases, the quality of regression generally improves.

of combining two Hadamard matrices, a permu-
tation and Gaussian scaling, we use a permu-
tation in conjunction with a Fourier Transform
matrix (i.e., with the random matrix given by
⇧FB). The intuition is that by picking a random
subset of columns from a (unitary) Fourier ma-
trix, we end up with vectors that are almost spa-
tially isotropic, albeit with slightly more dispersed
lengths than in Fastfood. We use this heuristic for
comparison purposes.

The results of the comparison are given in Table 1.
As can be seen, there is virtually no di↵erence be-
tween the exact kernel, the Nystrom approximation,
Random Kitchen Sinks and Fastfood. Somewhat sur-
prisingly the Fourier features work very well. This
indicates that the concentration of measure e↵ects im-
pacting Gaussian RBF kernels may actually be coun-
terproductive at their extreme.

In Figure 2, we also show regression performances as
a function of number of basis functions (n). A rep-
resentative result is shown with the CPU dataset and
demonstrates that it is necessary to have a large n
in order to learn highly nonlinear functions. Interest-
ingly, although Fourier features do not seem to approx-
imate the kernel RBF function, it performs compared
to other variants and improves as n increases.

4.2. Speed of kernel computations

In the previous experiments, we observe that Fastfood
is on par with exact kernel computation, the Nystrom
method, and Random Kitchen Sinks. The key point,
however, is to establish whether the algorithm o↵ers
computational savings.



Speed & accuracy

8

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Fastfood — Computing Hilbert Space Expansions in loglinear time

Table 1. Test set RMSE of di↵erent kernel computation methods. We can see Fastfood methods perform comparably with
Exact RBF, Nystrom or Random kitchen sinks. m is the size of the training set and d is the dimension of the input data.

Dataset m d Exact Nystrom Random Fastfood Fastfood
Kitchen Sinks FFT

Insurance Company (COIL2000) 5, 822 85 0.231 0.232 0.266 0.266 0.264
Wine Quality 4, 080 11 0.819 0.797 0.740 0.721 0.740
Parkinson Telemonitor 4, 700 21 0.059 0.058 0.054 0.052 0.054
CPU 6, 554 21 7.271 6.758 7.103 4.544 7.366
Relative location of CT slices (axial) 42, 800 384 n.a. 60.683 49.491 58.425 43.858
KEGG Metabolic Reaction Network 51, 686 27 n.a. 17.872 17.837 17.826 17.818
Year Prediction MSD 463, 715 90 n.a. 0.113 0.123 0.106 0.115
Forest 522, 910 54 n.a. 0.837 0.840 0.838 0.840

Table 2. Runtime, speed and memory improvements of
Fastfood relative to Random Kitchen Sinks

d n Fastfood RKS Speedup RAM
1, 024 16, 384 0.00058s 0.0139s 24x 256x
4, 096 32, 768 0.00136s 0.1224s 90x 1024x
8, 192 65, 536 0.00268s 0.5360s 200x 2048x

For this purpose we compare Random Kitchen Sinks
using Eigen1 and our method using Spiral2. Both opti-
mize numerical linear algebra libraries in C++. We are
interested in the time it takes to go from raw features
of a vector with dimension d to the label prediction
of that vector. On a small problem with d = 1, 024
and n = 16, 384, performing prediction with Ran-
dom Kitchen Sinks takes 0.07 seconds. Our method is
around 24x faster, taking only 0.003 seconds to com-
pute the label for one input vector. The speed gain is
even more significant for larger problems, as is evident
in Table 2. This confirms the fact that here loglin-
ear computation time is much faster (and much more
space e�cient) than Random Kitchen Sinks.

Random features for CIFAR-10: To understand
the importance of nonlinear feature expansions for a
practical application, we bechmarked FastFood, Ran-
dom Kitchen Sinks on CIFAR-10 dataset (Krizhevsky,
2009) which has 50,000 training images and 10,000 test
images. Each image is has 32x32 pixels and 3 channels
(d = 3072). In our experiments, linear SVMs achieve
42.3% accuracy on the test set. Non-linear expansions
improve the classification accuracy significantly. In
particular, FastFood FFT (“Fourier features”) achieve
63.1% while Fastfood (“Hadamard features”) and
Random Kitchen Sinks achieve 62.4% with an expan-
sion of n = 16, 384. These are also best known clas-
sification accuracies using permutation-invariant rep-
resentations on this dataset. In terms of speed, Ran-
dom Kitchen Sinks is 5x slower (in total training time)
and 20x slower (in predicting a label given an image)

1
http://eigen.tuxfamily.org/index.php?title=Main_Page

2
http://spiral.net

compared to Fastfood and Fastfood FFT. This demon-
strates that i) non-linear expansions are needed even
when the raw data is high-dimensional, and ii) Fast-
food are more practical for such problems.

More to the point, in many cases experimenters use
linear function classes not necessarily by choice but by
necessity. That is, using RBF kernels is typically com-
putationally infeasible for high-dimensional data and
large numbers of training instances. The experiments
on CIFAR-10 clearly demonstrate that this obstacle
can be overcome using fastfood.

5. Summary

We demonstrated in this paper that it is possible to
compute n nonlinear basis functions in n log d time,
a significant speedup over the best quadratic time al-
gorithms previously in use. This means that kernel
methods are now usable for high dimensional problems
that were previously only accessible to neural networks
and boosted decision trees.

Note also that fast multiplication with a matrix of
isotropic rows can also be used for expansions in terms
of random localized basis functions, since kx� x0k2 =
kxk2 + kx0k2 � 2 hx, x0i. Hence, instead of an expen-
sive matrix-vector multiplication (we need to compute
hx, x0i for many choices of x0) it is possible to eval-
uate these functions in log-linear time. Furthermore,
there exist alternative sampling representations for in-
ner product kernels, e.g. by exploiting the fact that
the convolution of two Gaussians is again a Gaussian.
This suggests that the Fourier basis can be replaced
by localized functions quite e�ciently.

A second direction is to iterate the nonlinearities of-
fered by Fastfood. That is, to replace layers of Neu-
ral Networks using random layers with evaluations of
Fastfood respectively. This and the localized basis
function choice are subject to current active research.

works fine
(no difference)
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For this purpose we compare Random Kitchen Sinks
using Eigen1 and our method using Spiral2. Both opti-
mize numerical linear algebra libraries in C++. We are
interested in the time it takes to go from raw features
of a vector with dimension d to the label prediction
of that vector. On a small problem with d = 1, 024
and n = 16, 384, performing prediction with Ran-
dom Kitchen Sinks takes 0.07 seconds. Our method is
around 24x faster, taking only 0.003 seconds to com-
pute the label for one input vector. The speed gain is
even more significant for larger problems, as is evident
in Table 2. This confirms the fact that here loglin-
ear computation time is much faster (and much more
space e�cient) than Random Kitchen Sinks.

Random features for CIFAR-10: To understand
the importance of nonlinear feature expansions for a
practical application, we bechmarked FastFood, Ran-
dom Kitchen Sinks on CIFAR-10 dataset (Krizhevsky,
2009) which has 50,000 training images and 10,000 test
images. Each image is has 32x32 pixels and 3 channels
(d = 3072). In our experiments, linear SVMs achieve
42.3% accuracy on the test set. Non-linear expansions
improve the classification accuracy significantly. In
particular, FastFood FFT (“Fourier features”) achieve
63.1% while Fastfood (“Hadamard features”) and
Random Kitchen Sinks achieve 62.4% with an expan-
sion of n = 16, 384. These are also best known clas-
sification accuracies using permutation-invariant rep-
resentations on this dataset. In terms of speed, Ran-
dom Kitchen Sinks is 5x slower (in total training time)
and 20x slower (in predicting a label given an image)
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compared to Fastfood and Fastfood FFT. This demon-
strates that i) non-linear expansions are needed even
when the raw data is high-dimensional, and ii) Fast-
food are more practical for such problems.

More to the point, in many cases experimenters use
linear function classes not necessarily by choice but by
necessity. That is, using RBF kernels is typically com-
putationally infeasible for high-dimensional data and
large numbers of training instances. The experiments
on CIFAR-10 clearly demonstrate that this obstacle
can be overcome using fastfood.

5. Summary

We demonstrated in this paper that it is possible to
compute n nonlinear basis functions in n log d time,
a significant speedup over the best quadratic time al-
gorithms previously in use. This means that kernel
methods are now usable for high dimensional problems
that were previously only accessible to neural networks
and boosted decision trees.

Note also that fast multiplication with a matrix of
isotropic rows can also be used for expansions in terms
of random localized basis functions, since kx� x0k2 =
kxk2 + kx0k2 � 2 hx, x0i. Hence, instead of an expen-
sive matrix-vector multiplication (we need to compute
hx, x0i for many choices of x0) it is possible to eval-
uate these functions in log-linear time. Furthermore,
there exist alternative sampling representations for in-
ner product kernels, e.g. by exploiting the fact that
the convolution of two Gaussians is again a Gaussian.
This suggests that the Fourier basis can be replaced
by localized functions quite e�ciently.

A second direction is to iterate the nonlinearities of-
fered by Fastfood. That is, to replace layers of Neu-
ral Networks using random layers with evaluations of
Fastfood respectively. This and the localized basis
function choice are subject to current active research.
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Summary

• Extensible to other kernels
– Easy to sample spectral distribution

– Easy to learn ‘multiple kernels’ since dimensions are so cheap

• Extensible to localized basis functions
– Instantiate Neal’s 1994 paper (GP and Neural Network equivalence)

– Matrix valued functions

• Iterate 
– Stack several layers

– Backprop is very cheap since inverse Hadamard is O(d log d)

• k(x,x’) is now expensive (invariance theorem of difficulty ...)
•Covariance operators are not explicitly available
•Never store explicit feature map (too much memory required)
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