Determinantal Point Processes

Joint work with Jennifer Gillenwater and Alex Kulesza

Image search: "jaguar"

Relevance only:

Image search: "jaguar"

Relevance only:

Relevance + diversity:

Summarization

Summarization

Summarization

Salience only:

- Romney expected to claim nomination
- Romney wins three primaries
- Romney tightens grip in GOP race
- Romney is unpopular, likely nominee

Summarization

Salience + coverage:

- Perry surging ahead of GOP pack
- Bachmann jumps into primary lead
- Herman Cain now leading in polls
- Gingrich leads Romney in national poll
- Santorum takes slight lead in GOP race
- Romney the inevitable nominee

Point processes

Discrete point processes

- N items (e.g., images or sentences):

$$
\mathcal{Y}=\{1,2, \ldots, N\}
$$

- 2^{N} possible subsets
- Probability measure \mathcal{P} over subsets $Y \subseteq \mathcal{Y}$

Independent point process

- Each element i included with probability p_{i} :

$$
\mathcal{P}(Y)=\prod_{i \in Y} p_{i} \prod_{i \notin Y}\left(1-p_{i}\right)
$$

Independent point process

- Each element i included with probability p_{i} :

$$
\mathcal{P}(Y)=\prod_{i \in Y} p_{i} \prod_{i \notin Y}\left(1-p_{i}\right)
$$

- For example, uniform:

Point process samples

Independent

Point process samples

Independent

DPP

Feature function \mathbf{g} on items in \mathcal{Y}

Feature function \mathbf{g} on items in \mathcal{Y}

Feature function \mathbf{g} on items in \mathcal{Y}

Feature function \mathbf{g} on items in \mathcal{Y}

Feature function \mathbf{g} on items in \mathcal{Y}

L

$$
L_{i j}=\boldsymbol{g}(i)^{\top} \boldsymbol{g}(j)
$$

Determinantal point process

$$
\begin{aligned}
\mathrm{L} & =\overline{\bar{\Xi}}\| \|\| \| \mid \\
\mathcal{P}(Y) & \propto \operatorname{det}\left(L_{Y}\right)
\end{aligned}
$$

[Macchi, 1975]

Determinantal point process

$\mathcal{P}(Y) \propto \operatorname{det}\left(L_{Y}\right)$

[Macchi, 1975]

Determinantal point process

$$
\begin{aligned}
& \mathcal{P}(Y) \propto \operatorname{det}\left(L_{Y}\right) \\
& L=\left(\begin{array}{llll}
L_{11} & L_{12} & L_{13} & L_{14} \\
L_{21} & L_{22} & L_{23} & L_{24} \\
L_{31} & L_{32} & L_{33} & L_{34} \\
L_{41} & L_{42} & L_{43} & L_{44}
\end{array}\right)
\end{aligned}
$$

[Macchi, 1975]

Determinantal point process

\[

\]

[Macchi, 1975]

Determinantal point process

\[

\]

[Macchi, 1975]

Determinantal point process

$$
\mathcal{P}(Y) \propto \operatorname{det}\left(L_{Y}\right)
$$

$$
\mathcal{P}(\{2,4\}) \propto\left|\begin{array}{ll}
L_{22} & L_{24} \\
L_{42} & L_{44}
\end{array}\right|
$$

[Macchi, 1975]

Determinantal point process

$$
\mathcal{P}(Y) \propto \operatorname{det}\left(L_{Y}\right)
$$

= squared volume spanned by

$$
\boldsymbol{g}(i), \quad i \in Y
$$

[Macchi, 1975]

Inference: normalization

$\mathcal{P}(Y) \propto \operatorname{det}\left(L_{Y}\right)$

Inference: normalization

$$
\mathcal{P}(Y)=\operatorname{det}\left(L_{Y}\right) / \operatorname{det}(L+I)
$$

Inference: marginals

$$
\mathcal{P}(A \subseteq \boldsymbol{Y})=\operatorname{det}\left(K_{A}\right)
$$

Inference: marginals

$$
\begin{gathered}
\mathcal{P}(A \subseteq \boldsymbol{Y})=\operatorname{det}\left(K_{A}\right) \\
K=L(L+I)^{-1}
\end{gathered}
$$

$\mathcal{P}(A \subseteq \boldsymbol{Y})=\operatorname{det}\left(K_{A}\right)$

$$
\begin{aligned}
\mathcal{P}(A \subseteq \boldsymbol{Y}) & =\operatorname{det}\left(K_{A}\right) \\
\mathcal{P}(i \in \boldsymbol{Y}) & =\operatorname{det}\left(K_{i i}\right)=K_{i i}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{P}(A \subseteq \boldsymbol{Y}) & =\operatorname{det}\left(K_{A}\right) \\
\mathcal{P}(i \in \boldsymbol{Y}) & =\operatorname{det}\left(K_{i i}\right)=K_{i i} \\
\mathcal{P}(i, j \in \boldsymbol{Y}) & =\operatorname{det}\left(\begin{array}{cc}
K_{i i} & K_{i j} \\
K_{j i} & K_{j j}
\end{array}\right) \\
& =K_{i i} K_{j j}-K_{i j} K_{j i} \\
& =\mathcal{P}(i \in \boldsymbol{Y}) \mathcal{P}(j \in \boldsymbol{Y})-K_{i j}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{P}(A \subseteq \boldsymbol{Y}) & =\operatorname{det}\left(K_{A}\right) \\
\mathcal{P}(i \in \boldsymbol{Y}) & =\operatorname{det}\left(K_{i i}\right)=K_{i i} \\
\mathcal{P}(i, j \in \boldsymbol{Y}) & =\operatorname{det}\left(\begin{array}{cc}
K_{i i} & K_{i j} \\
K_{j i} & K_{j j}
\end{array}\right) \\
& =K_{i i} K_{j j}-K_{i j} K_{j i} \\
& =\mathcal{P}(i \in \boldsymbol{Y}) \mathcal{P}(j \in \boldsymbol{Y})-K_{i j}^{2}
\end{aligned}
$$

Diversity

Sampling: requires eigendecomposition

$$
K=\sum_{n=1}^{N} \lambda_{n} \boldsymbol{v}_{n} \boldsymbol{v}_{n}^{\top}
$$

Sampling: requires eigendecomposition

$$
K=\sum_{n=1}^{N} \lambda_{n} \boldsymbol{v}_{n} \boldsymbol{v}_{n}^{\top}
$$

\|um

$$
\begin{array}{cccccc}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \boldsymbol{v}_{3} & \boldsymbol{v}_{4} & \boldsymbol{v}_{5} & \boldsymbol{v}_{6}
\end{array}
$$

Quality vs. diversity

Quality vs. diversity

Quality vs. diversity

$$
\begin{aligned}
& \text { - N. } \\
& L_{i j}=q(i) \phi(i)^{\top} \phi(j) q(j)
\end{aligned}
$$

$q(i) \in \mathbb{R}_{+}$
Quality score

Quality vs. diversity

$$
L_{i j}=q(i) \phi(i)^{\top} \phi(j) q(j)
$$

$q(i) \in \mathbb{R}_{+}$
$\phi(i) \in \mathbb{R}^{D},\|\phi(i)\|^{2}=1$
Quality score
Diversity features

Increased quality

Increased quality

Reduced diversity

Quality vs. diversity

- Intuitive and natural tradeoff
- Log-linear quality model:

$$
q(i)=\exp \left(\theta^{\top} \boldsymbol{f}(i)\right)
$$

- Optimize θ by maximum likelihood
- Open question: how to learn diversity

News summarization

- Input: 10 news articles per group, ~250 sentences
- Output: 665 character summary
- Eval: ROUGE metric (four human summaries)

System	ROUGE-1F	ROUGE-1R	R-SU4F
MMR	37.58	38.05	13.06

System	ROUGE-1F	ROUGE-1R	R-SU4F
Meer 65	37.87	38.20	13.06

System	ROUGE-1F	ROUGE-1R	R-SU4F
MMR	37.58	38.05	13.06
Peer 65	37.87	38.20	13.19
39.78	40.43	-	

System	ROUGE-1F	ROUGE-1R	R-SU4F
MMR	37.58	38.05	13.06
Peer 65	37.87	38.20	13.19
SubMod*	39.78	40.43	-
DPP greedy	38.96	39.15	13.83

[*Lin and Bilmes, 2012]

System	ROUGE-1F	ROUGE-1R	R-SU4F
MMR	37.58	38.05	13.06
Peer 65	37.87	38.20	13.19
SubMod*	39.78	40.43	-
DPP greedy	38.96	39.15	13.83
DPP MBR	40.33	$\mathbf{4 1 . 3 1}$	$\mathbf{1 4 . 1 3}$
['Lin and Bilmes, 2012]			

Large N?

Dual representation

$$
\begin{gathered}
L=\$ \Phi Q Q+\Phi \\
L_{i j}=q(i) \phi(i)^{\top} \phi(j) q(j)
\end{gathered}
$$

Dual representation

Dual representation

Dual representation

$N \times N$

$D \times D$

Dual representation

$N \times N$

$D \times D$

- C and L have same (non-zero) eigenvalues
- Eigenvectors are related
- Use C for sampling and other inference

Projection

D

N Φ

Projection

D

$\times \quad D$

Projection

D
d
d

Projection

d
d

D

N
Ф
$?=N \tilde{\phi}$

Random projection

Random projection

$\Omega \Omega \Omega \Omega \Omega \Omega \Omega$ $\Omega \Omega \Omega \Omega \Omega \Omega \Omega$

Random projection to $\log \mathrm{N}$ dimensions

All distances approximately preserved (w.h.p.)
[Johnson \& Lindenstrauss, 1984]

All distances approximately preserved (w.h.p.)
[Johnson \& Lindenstrauss, 1984]

All volumes approximately
[Magen \& Zouzias, 2008]

All volumes approximately preserved (w.h.p.)
[Magen \& Zouzias, 2008]

Random projection for DPPs

- Theorem: For $d=O\left(\frac{\log N}{\epsilon^{2}}\right)$ dimensions, with high probability we have

$$
\|\mathcal{P}-\tilde{\mathcal{P}}\|_{1} \leq O(\epsilon)
$$

Random projection for DPPs

- Theorem: For $d=O\left(\frac{\log N}{\epsilon^{2}}\right)$ dimensions, with high probability we have

$$
\|\mathcal{P}-\tilde{\mathcal{P}}\|_{1} \leq O(\epsilon)
$$

- Logarithmic in N, no dependence on D

Random projection for DPPs

- Theorem: For $d=O\left(\frac{\log N}{\epsilon^{2}}\right)$ dimensions, with high probability we have

$$
\|\mathcal{P}-\tilde{\mathcal{P}}\|_{1} \leq O(\epsilon)
$$

- Logarithmic in N , no dependence on D
- Small, $\mathrm{d} \times \mathrm{d}$ dual representation

DPPs at scale

Small N	Large N	
	Standard DPP or dual DPP	Dual DPP
Large D	Standard DPP	Random projection dual DPP

Exponential N?

\mathcal{Y}
\mathcal{Y}
+000000000000000 -20000000000000

N3

\bigcirc

$\stackrel{\ominus}{-}$

\bigcirc

$$
\star \neq
$$

Structured DPPs

- Exponentially many complex "items"
- Can't even handle $O(N)$
- But can still compute marginals and sample!

Structured DPPs

- Exponentially many complex "items"
- Can't even handle $O(N)$
- But can still compute marginals and sample!

1. Factorized model
2. Dual DPPs
3. Second order message-passing

Structure

- Each item $\boldsymbol{i} \in \mathcal{Y}$ is a structure with factors α :

$$
\boldsymbol{i}=\left\{i_{\alpha}\right\}
$$

- For instance, standard sequence model:

1. Factorization

- Quality scores factor multiplicatively:

$$
q(\boldsymbol{i})=\prod q\left(i_{\alpha}\right)
$$

- Diversity features factor additively:

1. Factorization

- Quality scores factor multiplicatively:

$$
q(\boldsymbol{i})=\prod q\left(i_{\alpha}\right) \quad \text { e.g., MRF }
$$

- Diversity features factor additively:

1. Factorization

- Quality scores factor multiplicatively:

$$
q(\boldsymbol{i})=\prod q\left(i_{\alpha}\right) \quad \text { e.g., MRF }
$$

- Diversity features factor additively:

$$
\phi(\boldsymbol{i})=\sum_{\alpha} \phi\left(i_{\alpha}\right)
$$

1. Factorization

- Quality scores factor multiplicatively:

$$
q(\boldsymbol{i})=\prod q\left(i_{\alpha}\right) \quad \text { e.g., MRF }
$$

- Diversity features factor additively:

$$
\phi(i)=\sum_{\alpha} \phi\left(i_{\alpha}\right) \quad \text { e.g., Hamming }
$$

Multiple-pose estimation

- Images from TV shows
- 3+ people/image
- Trained quality model, spatial diversity model

Quality

Quality

Quality

Quality

Quality

Diversity

Diversity

Diversity

Low diversity

Diversity

Low diversity

Diversity

Low diversity

High diversity

2. Dual representation

$N \times N$

$D \times D$

2. Dual representation

$N \times N \quad D \times D$
$C_{r l}=\sum_{i} q^{2}(\boldsymbol{i}) \phi_{r}(\boldsymbol{i}) \phi_{l}(\boldsymbol{i})$

2. Dual representation

$$
\begin{gathered}
L=\square D \\
N \times N \\
C_{r l}=\sum_{i} q^{2}(\boldsymbol{i}) \phi_{r}(\boldsymbol{i}) \phi_{l}(\boldsymbol{i})
\end{gathered}
$$

C is covariance of ϕ under $\operatorname{Pr}(\boldsymbol{i}) \propto q^{2}(\boldsymbol{i})$

3. Second-order message passing

- Can compute feature covariance using message passing when graph is a tree
- Use special semiring in place of sum-product
- Linear in number of nodes
- Quadratic in dimension of diversity features ϕ
[Li + Eisner, 2009]

\square

 -

Pose accuracy

Pose accuracy

Overall F_{1}

Precision / recall (circles)

News threading

- Input: large news corpus
- Output: threads of articles

- Each thread narrates a major story
- Threads are diverse to cover many stories
- Combine k-DPPs, structured DPPs, dual

DPPs, and random projection

Apr 3: Instagram reaches
30 million users, releases
Android version

Apr 9: Facebook buys
 Instagram for $\$ 1$ billion

Apr 3: Instagram reaches
30 million users, releases
Android version

Apr 9: Facebook buys
 Instagram for \$1 billion

Apr 3: Instagram reaches
Apr 10: Users call for Instagram "exodus" 30 million users, releases

Android version

Dynamic topic model

hotel kitchen casa inches post shade monica closet
mets rangers dodgers delgado martinez astacio angels mientkiewicz
social security accounts retirement benefits tax workers 401 payroll
palestinian israel baghdad palestinians sunni korea gaza israeli
cancer heart breast women disease aspirin risk study

social security accounts retirement benefits tax workers 401 payroll
palestinian israel baghdad palestinians sunni korea gaza israeli
cancer heart breast women disease aspirin risk study

Jan 11: Study Backs Meat, Colon Tumor Link
Feb 07: Patients Still Don't Know How Often Women Get Heart Disease Mar 07: Aspirin Therapy Benefits Women, but Not the Way It Aids Men Mar 16: Radiation Therapy Doesn't Increase Heart Disease Risk Apr 11: Personal Health: Women Struggle for Parity of the Heart May 16: Black Women More Likely to Die from Breast Cancer May 24: Studies Bolster Diet, Exercise for Breast Cancer Patients Jun 21: Another Reason Fish is Good for You

DPP threads

iraq iraqi killed baghdad arab marines deaths forces
social tax security democrats rove accounts
owen nominees senate democrats judicial filibusters
israel palestinian iraqi israeli gaza abbas baghdad
pope vatican church parkinson

social tax security democrats rove accounts

owen nominees senate democrats judicial filibusters
israel palestinian iraqi israeli gaza abbas baghdad
pope vatican church parkinson

```
Jan 08 Jan 28 Feb 17 Mar 09 Mar 29 Apr 18 May 08 May 28 Jun 17
```

Feb 24: Parkinson's Disease Increases Risks to Pope Feb 26: Pope's Health Raises Questions About His Ability to Lead Mar 13: Pope Returns Home After 18 Days at Hospital Apr 01: Pope's Condition Worsens as World Prepares for End of Papacy Apr 02: Pope, Though Gravely III, Utters Thanks for Prayers Apr 18: Europeans Fast Falling Away from Church Apr 20: In Developing World, Choice [of Pope] Met with Skepticism May 18: Pope Sends Message with Choice of Name

Scale

- ~35,000 articles per six month time period
- About 10^{360} possible sets of threads
- $D=36,356$-dimensional diversity features
- Naively, requires 1600 TB of memory
- Use random projection to make it efficient

Evaluation

- Gold timelines too expensive
- Human news summaries to evaluate content
- amazonmechanical turk to evaluate thread quality

Results: Human summaries \& ratings

System	
ROUGE-1F	
R-SU4F	
Coherence	
Interlopers	

Results: Human summaries \& ratings

System	k-means
ROUGE-1F	16.5
R-SU4F	3.76
Coherence	2.73
Interlopers	0.71

Results: Human summaries \& ratings

System	k-means	DTM
ROUGE-1F	16.5	14.7
R-SU4F	3.76	3.44
Coherence	2.73	3.19
Interlopers	0.71	1.10

Results: Human summaries \& ratings

System	k-means	DTM	k-SDPP
ROUGE-1F	16.5	14.7	$\mathbf{1 7 . 2}$
R-SU4F	3.76	3.44	$\mathbf{3 . 9 8}$
Coherence	2.73	3.19	$\mathbf{3 . 3 1}$
Interlopers	0.71	1.10	1.15

Results: Human summaries \& ratings

System	k-means	DTM	k-SDPP
ROUGE-1F	16.5	14.7	$\mathbf{1 7 . 2}$
R-SU4F	3.76	3.44	$\mathbf{3 . 9 8}$
Coherence	2.73	3.19	$\mathbf{3 . 3 1}$
Interlopers	0.71	1.10	1.15
Runtime (s)	626	19,434	$\mathbf{2 5 2}$

- DPPs model global, negative correlations
- Efficient inference:
- normalization
- marginals
- conditioning
- sampling
- Extensions make DPPs useful for modeling and learning from large-scale real-world data

Supporting Materials

- ML Foundations \& Trends Survey http://arxiv.org/abs/1207.6083 (Pre-print, 120 pages)
- Matlab Code: http://www.cis.upenn.edu/~kulesza/code/dpp.tgz

