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Salience only:

• Romney expected to claim nomination

• Romney wins three primaries

• Romney tightens grip in GOP race

• Romney is unpopular, likely nominee

Summarization



Salience + coverage:

• Perry surging ahead of GOP pack
• Bachmann jumps into primary lead
• Herman Cain now leading in polls
• Gingrich leads Romney in national poll
• Santorum takes slight lead in GOP race
• Romney the inevitable nominee

Summarization
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•      items (e.g., images or sentences):

•      possible subsets

• Probability measure      over subsets              

Y = {1, 2, ..., N}

P

N

2N

Y ⊆ Y

Discrete point processes



• Each element i included with probability     :
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• Each element i included with probability     :

• For example, uniform:
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L =

Lij = g(i)!g(j)
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Determinantal point process

P(Y ) ∝ det(LY )

[Macchi, 1975]

= squared volume spanned by
g(i), i ∈ Y



Inference: normalization

P(Y ) ∝ det(LY )



Inference: normalization

P(Y ) = det(LY )/ det(L+ I)



Inference: marginals
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Lij = q(i)�(i)��(j)q(j)

Diversity features
�(i) � RD, ��(i)�2 = 1

L =

Quality score
q(i) ∈ R+

Q Φ Q
Φ

Quality vs. diversity
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• Intuitive and natural tradeo!

• Log-linear quality model:

• Optimize      by maximum likelihood

• Open question: how to learn diversity

Quality vs. diversity

�

q(i) = exp(θ!f(i))



News summarization

• Input: 10 news articles per group, ~250 sentences

• Output: 665 character summary

• Eval: ROUGE metric (four human summaries)



System ROUGE-1F ROUGE-1R R-SU4F

MMR 37.58 38.05 13.06

Peer 65 37.87 38.20 13.19

SubMod* 39.78 40.43 -

DPP greedy 38.96 39.15 13.83

DPP MBR 40.33 41.31 14.13
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Large N?
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Dual representation

L = C = 2

N x N D x D



Dual representation

L = C = 2

N x N D x D

• C and L have same (non-zero) eigenvalues

• Eigenvectors are related

• Use C for sampling and other inference
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Random projection 
to log N dimensions



All distances approximately 
preserved (w.h.p.)

[Johnson & Lindenstrauss, 1984]
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with high probability we have
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• Theorem: For                                  dimensions, 
with high probability we have

• Logarithmic in N, no dependence on D

• Small, d x d dual representation

Random projection for DPPs

d = O

�
log N

�2

�

�P � P̃�1 � O(�) .



DPPs at scale

Small N Large N

Small D Standard DPP
or dual DPP Dual DPP

Large D Standard DPP
Random

projection 
dual DPP
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Structured DPPs

• Exponentially many complex “items”

• Can’t even handle O(N)

• But can still compute marginals and sample!



Structured DPPs

• Exponentially many complex “items”

• Can’t even handle O(N)

• But can still compute marginals and sample!

1. Factorized model

2. Dual DPPs

3. Second order message-passing



Structure

• Each item              is a structure with factors    :

• For instance, standard sequence model:

i � Y

i = {i�}

�

i1 i2 i3 i4 i5



1. Factorization

q(i) =
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q(i�)

• Quality scores factor multiplicatively:

• Diversity features factor additively:
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q(i) =
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q(i�)

• Quality scores factor multiplicatively:

• Diversity features factor additively:

�(i) =
�

�

�(i�)

e.g., MRF

e.g., Hamming



Multiple-pose estimation

• Images from TV shows

• 3+ people/image

• Trained quality model, spatial diversity model
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L = C = 2

N x N D x D

2. Dual representation



L = C = 2
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L = C = 2

N x N D x D

Crl =
�

i

q2(i)�r(i)�l(i)

C is covariance of      under                 .� Pr(i) � q2(i)

2. Dual representation



3. Second-order message passing

• Can compute feature covariance using 
message passing when graph is a tree

• Use special semiring in place of sum-product

• Linear in number of nodes

• Quadratic in dimension of diversity features

[Li + Eisner, 2009]

φ
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Figure 4: Structured marginals for the pose estimation task on successive steps of the sampling
algorithm, with already selected poses superimposed, for a variety of input images (shown on the
left). In some cases the quality scores are not accurate enough to properly localize a person, and
we also fail to identify the correct number of people in certain instances. Nonetheless, similar to
the unstructured case (Figure 1), the SDPP marginals reflect the desire to include diverse structures
(poses) in the set. These examples were selected by hand to show a range of performance.
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Figure 3: Results for pose estimation. The horizontal axis gives the distance threshold used to
determine whether two parts are successfully matched. 95% confidence intervals are shown.

Figure 4: Structured marginals for the pose estimation task on successive steps of the sampling
algorithm, with already selected poses superimposed. Input images are shown on the left.

For illustration, we show the sampling process for a few images in Figure 4. As in Figure 1b, the
SDPP efficiently discounts poses that are similar to those already selected.

6 Conclusion

We introduced the structured determinantal point process (SDPP), a probabilistic model over sets of
structures such as sequences, trees, or graphs. We showed the intuitive “diversification” properties
of the SDPP, and developed efficient message-passing algorithms to perform inference through a
dual characterization of the standard DPP and a natural factorization.
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• Input: large news corpus

• Output: threads of articles

• Each thread narrates a major story

• Threads are diverse to cover many stories

• Combine k-DPPs, structured DPPs, dual 
DPPs, and random projection

News threading
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Apr 3: Instagram reaches 
30 million users, releases 

Android version

Apr 10: Users call for 
Instagram “exodus”

Apr 9: Facebook buys 
Instagram for $1 billion







Jan 08 Jan 28 Feb 17 Mar 09 Mar 29 Apr 18 May 08 May 28 Jun 17

cancer heart breast women disease aspirin risk study 

palestinian israel baghdad palestinians sunni korea gaza israeli 

social security accounts retirement benefits tax workers 401 payroll 

mets rangers dodgers delgado martinez astacio angels mientkiewicz 

hotel kitchen casa inches post shade monica closet 

Dynamic topic model



Jan 08 Jan 28 Feb 17 Mar 09 Mar 29 Apr 18 May 08 May 28 Jun 17

cancer heart breast women disease aspirin risk study 

palestinian israel baghdad palestinians sunni korea gaza israeli 

social security accounts retirement benefits tax workers 401 payroll 

mets rangers dodgers delgado martinez astacio angels mientkiewicz 

hotel kitchen casa inches post shade monica closet 

Jan 11: Study Backs Meat, Colon Tumor Link
Feb 07: Patients Still Don’t Know How Often Women Get Heart Disease
Mar 07: Aspirin Therapy Benefits Women, but Not the Way It Aids Men 
Mar 16: Radiation Therapy Doesn’t Increase Heart Disease Risk
Apr 11: Personal Health: Women Struggle for Parity of the Heart
May 16: Black Women More Likely to Die from Breast Cancer
May 24: Studies Bolster Diet, Exercise for Breast Cancer Patients
Jun 21: Another Reason Fish is Good for You



Jan 08 Jan 28 Feb 17 Mar 09 Mar 29 Apr 18 May 08 May 28 Jun 17

pope vatican church parkinson 

israel palestinian iraqi israeli gaza abbas baghdad 

owen nominees senate democrats judicial filibusters 

social tax security democrats rove accounts 

iraq iraqi killed baghdad arab marines deaths forces 

DPP threads



Jan 08 Jan 28 Feb 17 Mar 09 Mar 29 Apr 18 May 08 May 28 Jun 17

pope vatican church parkinson 

israel palestinian iraqi israeli gaza abbas baghdad 

owen nominees senate democrats judicial filibusters 

social tax security democrats rove accounts 

iraq iraqi killed baghdad arab marines deaths forces 

Feb 24: Parkinson’s Disease Increases Risks to Pope
Feb 26: Pope’s Health Raises Questions About His Ability to Lead 
Mar 13: Pope Returns Home After 18 Days at Hospital
Apr 01: Pope’s Condition Worsens as World Prepares for End of Papacy 
Apr 02: Pope, Though Gravely Ill, Utters Thanks for Prayers
Apr 18: Europeans Fast Falling Away from Church
Apr 20: In Developing World, Choice [of Pope] Met with Skepticism
May 18: Pope Sends Message with Choice of Name



• ~35,000 articles per six month time period

• About 10360 possible sets of threads

• D = 36,356-dimensional diversity features

• Naively, requires 1600 TB of memory

• Use random projection to make it e"cient

Scale



• Gold timelines too expensive

• Human news summaries to evaluate content

•                              to evaluate thread quality

Evaluation



System k-means DTM k-SDPP

ROUGE-1F 16.5 14.7 17.2

R-SU4F 3.76 3.44 3.98

Coherence 2.73 3.19 3.31

Interlopers 0.71 1.10 1.15

Results: Human summaries & ratings



System k-means DTM k-SDPP

ROUGE-1F 16.5 14.7 17.2

R-SU4F 3.76 3.44 3.98

Coherence 2.73 3.19 3.31

Interlopers 0.71 1.10 1.15

Results: Human summaries & ratings



System k-means DTM k-SDPP

ROUGE-1F 16.5 14.7 17.2

R-SU4F 3.76 3.44 3.98

Coherence 2.73 3.19 3.31

Interlopers 0.71 1.10 1.15

Results: Human summaries & ratings



System k-means DTM k-SDPP

ROUGE-1F 16.5 14.7 17.2

R-SU4F 3.76 3.44 3.98

Coherence 2.73 3.19 3.31

Interlopers 0.71 1.10 1.15

Results: Human summaries & ratings



System k-means DTM k-SDPP

ROUGE-1F 16.5 14.7 17.2

R-SU4F 3.76 3.44 3.98

Coherence 2.73 3.19 3.31

Interlopers 0.71 1.10 1.15

Results: Human summaries & ratings

Runtime (s) 626 19,434 252



• DPPs model global, negative correlations

• E"cient inference:
- normalization
- marginals
- conditioning
- sampling

• Extensions make DPPs useful for modeling and 
learning from large-scale real-world data



• ML Foundations & Trends Survey 
http://arxiv.org/abs/1207.6083  (Pre-print, 120 pages)

• Matlab Code: 
http://www.cis.upenn.edu/~kulesza/code/dpp.tgz 

Supporting Materials
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