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Main Results in Information Theory

I Achievable Source Encoding:

R ≥ H(M)

I Reliable Transmission Rate:

R ≤ I(X;Y )

I Separation Principle: No loss of optimality if perform separately.
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Channel Encoding

I The source (encoder) provides symbols m ∈ {1,2, . . . ,M}

I The channel encoder assigns them a bitstream of n symbols:

x = [x1 x2 · · · xn]

I If the messages are also binary symbols:

m = [m1 m2 · · · mk]

I The rate is given by:

R =
log2M

n
=
k

n
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Linear Channel Encoding

I Linear transformation from source bits to encoded bits:

x = mG = m[I P]

G is a k × n matrix that adds n− k redundancy bits to m.

I Independent channel realizations:

yi = xi + zi ∀i = 1, . . . , n,

zi is iid noise.

I At the channel decoder we want to recover x from y.

x̂ = argmax
x a CW

p(y|x) = argmax
x a CW

n∏
`=1

p(y`|x`)
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Syndrome and Parity Check Matrix

I The dual space of the linear space G:

H = [−P> I]

I Syndrome:

s = yH> = (x + z)H> = zH>

I Why is xH> = 0?

I s uniquely identifies the error pattern.

I s has 2n−k entries.

Pérez-Cruz 4



Channel Coding for LDPC codes MLSS 2012

Solutions to Channel Coding

I Algebraic Code (40’s-70’s):

• Linear encoding and decoding

• Limited to minimum distance.

I Convolutional Codes (60’s-80’s):

• Linear encoding and decoding.

• Decoding exponential in the memory.

I LDPC and Turbo Codes (63 & 90’s-10’s):

• Almost linear encoding and decoding.

• Almost achieve capacity.
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Tanner Graph (Factor Graph)

I Given a parity Check Matrix

H =

1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1

 ,
what do we know?

I What restriction do we have over x1, x5, x6 and x7?
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Tanner Graph (Factor Graph)

I Given a parity Check Matrix

H =

1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1

 ,
what do we know?

I What restriction do we have over x1, x5, x6 and x7?

I and over x2, x4, x6 and x7? or x3, x4, x5 and x7?
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Tanner Graph (Factor Graph)

I Given a parity Check Matrix

H =

1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1

 ,
what do we know?

I What restriction do we have over x1, x5, x6 and x7?

I and over x2, x4, x6 and x7? or x3, x4, x5 and x7?

I Remember that:

xH> = 0

I Hence?
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Bipartite Graph
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Bipartite Graph
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Maximum Likelihood Decoder

I ML solution:

x̂ = argmax
x a CW

p(y|x) = argmax
x

n∏
`=1

p(y`|x`)
n−k∏
j=1

δ(xh>j = 0)

I ML solution is exponential in n.

I Bitwise MAP solution:

x̂i = argmax
xi∈{0,1}

p(xi|y) = argmax
v∈{0,1}

∑
x

xi=v

n∏
`=1

p(y`|x`)
n−k∏
j=1

δ(xh>j = 0)

I Still exponential in n, but ...
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Computing p(xi)

I If we ignore the graph structure:

p(x|y) =
p(y|x)p(x)

p(y)
=

1

p(y)

1

2k

n∏
`=1

p(y`|x`)
n−k∏
j=1

δ(xh>j = 0)

I For binary variables we need to compute 2n elements and per-

form 2n − 1 sums for computing:

p(xi = v|y) =
∑
x

xi=v

p(x|y)

I Can we use the graph structure to reduced this computational

complexity?
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Computing p(xi)

I If we ignore the graph structure:

p(x|y) =
p(y|x)p(x)

p(y)
=

1

p(y)

1

2k

n∏
`=1

p(y`|x`)
n−k∏
j=1

δ(xh>j = 0)

I For binary variables we need to compute 2n elements and per-

form 2n − 1 sums for computing:

p(xi = v|y) =
∑
x

xi=v

p(x|y)

I Can we use the graph structure to reduced this computational

complexity?

I Yes, we can!
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An Easy Example

p(x|y) ∝
7∏

`=1

p(y`|x`)
4∏

j=1

δ(xh>j = 0)

I We can compute p(x1) from:

p(x1) ∝
∑

x2,x3,x4
x5,x6,x7

fA(x1, x2, x3)fB(x2, x5, x6)fC(x5, x7)fD(x3, x4)
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An Easy Example

I We can express the sum as follows:

p(x1) ∝
∑
x2,x3

fA(x1, x2, x3)
∑
x4

fD(x3, x4)
∑
x5,x6

fB(x2, x5, x6)
∑
x7

fC(x5, x7)

I We define:

rC→x5
(x5) =

∑
x7

fC(x5, x7)

rC→x5
(x5 = 0) = fC(x5 = 0, x7 = 0) + fC(x5 = 0, x7 = 1)

rC→x5
(x5 = 1) = fC(x5 = 1, x7 = 0) + fC(x5 = 1, x7 = 1)

I We need to compute 4 components and perform 2 sums.
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An Easy Example

I We can express the sum as follows:

p(x1) ∝
∑
x2,x3

fA(x1, x2, x3)
∑
x4

fD(x3, x4)
∑
x5,x6

fB(x2, x5, x6)rC→x5
(x5)

I Now we define:

rB→x2
(x2) =

∑
x5,x6

fB(x2, x5, x6)rC→x5
(x5)

rD→x3
(x3) =

∑
x4

fD(x3, x4)

I We need to compute 8+4 components and perform 6+2 sums.
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An Easy Example

I We can express the sum as follows:

p(x1) ∝
∑
x2,x3

fA(x1, x2, x3)rB→x2
(x2)rD→x3

(x3)

I Now we define:

rA→x1
(x1) =

∑
x2,x3

fA(x1, x2, x3)rB→x2
(x2)rD→x3

(x3)

I We need to compute 8 components and perform 6 sums.

I Leaving p(x1) ∝ rA→x1
(x1) and:

p(x1 = 1) =
rA→x1

(x1 = 1)

rA→x1
(x1 = 1) + rA→x1

(x1 = 0)
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An Easy Example

I We have computed p(x1) computing 26 terms and performing

17 sums.

I The direct enumeration would lead to computing 128 terms and

performing 127 sums.

I Moreover the proposed approach gives us the partition function:

Z = rA→x1
(x1 = 0) + rA→x1

(x1 = 1)

I For the other marginals we need to do a bit more work.

I Drawback: We need to sort the variables.
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An Easy Example

I We have computed p(x1) computing 26 terms and performing

17 sums.

I The direct enumeration would lead to computing 128 terms and

performing 127 sums.

I Moreover the proposed approach gives us the partition function:

Z = rA→x1
(x1 = 0) + rA→x1

(x1 = 1)

I For the other marginals we need to do a bit more work.

I Drawback: We need to sort the variables. Do we really?
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Message Passing Algorithms

I We do not need to sort the variables in order to compute Z or

the marginals.

I We can use only local computations in the graph to obtain these

quantities.

I Simple algorithm:

• The variables nodes tell each factors about themselves.

• The factors tell the variables what their value should be.

• Iterate until convergence.

I Convergence is achieved in finite number of iterations.
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Message Passing Algorithms

I Variable to factor:

• Send the unknown information about the factor.

• Send information to local factors. x2 to A, B and E2.

qx2→A(x2) = rB→x2
(x2)rE2→x2

(x2)

I Factor to Variable:

• Send the unknown information about the variable.

• Send information to local variable nodes. A to x1, x2 and x3.

rA→x2
(x2) =

∑
x1,x3

fA(x1, x2, x3)qx1→A(x1)qx3→A(x3)
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Message Passing Algorithms

I Variable to factor:

• Send the unknown information about the factor.

• Send information to local factors. x2 to A, B and E2.

qx2→A(x2) = rB→x2
(x2)rE2→x2

(x2)

I Factor to Variable:

• Send the unknown information about the variable.

• Send information to local variable nodes. A to x1, x2 and x3.

rA→x2
(x2) =

∑
x1,x3

fA(x1, x2, x3)qx1→A(x1)qx3→A(x3)

Pérez-Cruz 22



Channel Coding for LDPC codes MLSS 2012

Message Passing Algorithms

I Variable to factor:

• Send the unknown information about the factor.

• Send information to local factors. x2 to A, B and E2.

qx2→A(x2) = rB→x2
(x2)rE2→x2

(x2)

I Factor to Variable:

• Send the unknown information about the variable.

• Send information to local variable nodes. A to x1, x2 and x3.

rA→x2
(x2) =

∑
x1,x3

fA(x1, x2, x3)qx1→A(x1)qx3→A(x3)
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Message Passing Algorithms

I Variable to factor:

• Send the unknown information about the factor.

• Send information to local factors. x2 to A, B and E2.

qx2→A(x2) = rB→x2
(x2)rE2→x2

(x2)

I Factor to Variable:

• Send the unknown information about the variable.

• Send information to local variable nodes. A to x1, x2 and x3.

rA→x2
(x2) =

∑
x1,x3

fA(x1, x2, x3)qx1→A(x1)qx3→A(x3)
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Message Passing Algorithms

I Variable to factor:

• Send the unknown information about the factor.

• Send information to local factors. x2 to A, B and E2.

qx2→A(x2) = rB→x2
(x2)rE2→x2

(x2)

I Factor to Variable:

• Send the unknown information about the variable.

• Send information to local variable nodes. A to x1, x2 and x3.

rA→x2
(x2) =

∑
x1,x3

fA(x1, x2, x3)qx1→A(x1)qx3→A(x3)
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Message Passing Algorithms

I Variable n to factor J:

qxn→J(xn) =
∏

J ′∈M(n)\J
rJ ′→xn(xn)

I Factor J to variable n:

rJ→xn(xn) =
∑
xJ\n

fJ(xJ)
∏

n′∈N (J)\n
qxn′→J(xn′)

• M(n) are the factors in which xn is included.

• N (J) are the variable nodes for factor J.

• xJ are the variables for factor J.
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Message Passing Algorithms

I We do not need to sort the sums.

I We do not need to know the structure of the whole graph.

I We only need local information:

• which variable is connected to which factor.

• which factor is connected to which variable.

I For tree-like graphs the solution is exact and it finishes in a finite

number of iterations.

I For general graphs this algorithm is not applicable.

I ... but it typically works well.
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Low Density Parity Check Codes

I If we have few ones in the parity check matrix,
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Low Density Parity Check Codes

I If we have few ones in the parity check matrix,

I ... we should expect few loops.

I Locally it will look like a tree
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Low Density Parity Check Codes

I If we have few ones in the parity check matrix,

I ... we should expect few loops.

I Locally it will look like a tree

I ... and if we run the message passing algorithm for a finite

iterations we will not get harmful feedback.

I And if the density is large enough it leads to ‘good codes’.

I 3 ones per column seems to work ... good enough.
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Low density?
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Low density?
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Low density
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Low density
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Low density
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How do we know LDPC codes are ‘good’?

I We select a simple channel model:

• Binary Erasure Channel (BEC).

I We simplify the message passing algorithm:

• Peeling Decoder.

I We analyze its behavior:

• Density Evolution.

I We show it achieves channel capacity.

• Optimized LDPC codes.
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Binary Erasure Channe
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Binary Erasure Channe

I BEC is a simple channel, because ...
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Binary Erasure Channe

I BEC is a simple channel, because ...

• we either have total knowledge of the transmitted bit.

• or we are completely cluless.

I if y` = 0 or y` = 1:

p(x` = 0|y` = 0) = 1 p(x` = 1|y` = 0) = 0

p(x` = 0|y` = 1) = 0 p(x` = 1|y` = 1) = 1

I if y` =? :

p(x` = 0|y` =?) = 0.5 p(x` = 1|y` =?) = 0.5
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Message Passing over the BEC

I Initial Message:
rx2→A(x2) ∝ p(x2|y2)

I Message from factors to Variables:

rA→x2
(x2) =

∑
x1,x3

fA(x1, x2, x3)qx1→A(x1)qx3→A(x3)

I What happens if either x1 or x2 are erased?

I What happens if neither are erased?

I After the first iteration:

p(x2|y2, y1, y2, y5, y6) ∝ p(x2|y2)rA→x2
(x2)rB→x2

(x2)
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Message Passing over the BEC

I Initial Message:
rx2→A(x2) ∝ p(x2|y2)

I Message from factors to Variables:

rA→x2
(x2) =

∑
x1,x3

fA(x1, x2, x3)qx1→A(x1)qx3→A(x3)

I What happens if either x1 or x2 are erased?

I What happens if neither are erased?

I After the first iteration:

p(x2|y2, y1, y2, y5, y6) ∝ p(x2|y2)rA→x2
(x2)rB→x2

(x2)

I What happens if one of them is not erased?
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Example

I blue is zero.

I red is one.
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Example
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Example
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Example
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Example
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Message Passing over the BEC

I From this example we reduce the message passing algorithm to

two simple rules:

• Variable is de-erase if it gets a single de-erasure message.

• Factor sends a de-erasure message if all the other variables

are known.

I The Peeling decoder:

1. Remove from the bipartite graph all known variables.

2. Search for factors with a single variable.

3. Remove those variables from the graph. Go to 2.
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Example
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Example
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Can the Peeling Decoder fail?

I When all the factors have two or more outputs.

I Can the solution still be unique?

I It dependens.

I It never makes a mistake, though.
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Analysis

I How good is our LDPC code?

I What error rate in the channel can be decoded?

I Is it equal to the channel capacity?

I Density Evolution answers these questions for LDPC code.

I Reminder: For the BEC C = 1− ε.

I We first analyze a regular LDPC code with 3 ones per column

and rate 1/2.
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Detangle
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First Step

I If the erasure probability in the channel is ε, what is the proba-

bility that this variable is erased?

R0 = ε
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First Step

I If the erasure probability in the channel is ε, what is the proba-

bility that this variable is erased?

R0 = ε

Pérez-Cruz 54



Channel Coding for LDPC codes MLSS 2012

Second Step (a)

I If the erasure probability in the channel is ε, what is the proba-

bility that each factor sends an erased message?
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Second Step (a)

I If the erasure probability in the channel is ε, what is the proba-

bility that each factor sends an erased message?

I It sends an erased message if any of the variables is erased:

L1 = 1− (1− ε)5
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Second Step (b)

I If the erasure probability in the channel is ε, what is the prob-

ability that the top variable is erased once it has received the

messages from the factors?
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Second Step (b)

I If the erasure probability in the channel is ε, what is the prob-

ability that the top variable is erased once it has received the

messages from the factors?

I It is erased is any of the messages are erased:

R1 = ε(L1)3 = ε(1− (1− ε)5)3
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General Step

I The variable in next layer variable is erased with probability:

Rt+1 = ε(1− (1−Rt)5)2

I Why did I change the 3 for the 2?

Pérez-Cruz 59



Channel Coding for LDPC codes MLSS 2012

General Step

I The variable in next layer variable is erased with probability:

Rt+1(ε, Rt) = ε(1− (1−Rt)5)2

I In this recursion, we can expect two things to happen:

• Either Rt+1 is reduced in each iteration to zero.

• Or for some t: Rt+1 = Rt. The algorithm stops decoding.

I What it the maximum ε for which the algorithm recovers the

transmitted word?
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Matlab Demo
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Irregular LDPC codes

I For the Regular LDPC codes maximum error 0.4294 with DP

decoding.

I For the Regular LDPC codes maximum error 0.48815 with MAP

decoding.

I Channel capacity 0.5.

I Can we get closer to capacity?

• Using Irregular LDPC codes.
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Irregular LDPC codes
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Irregular LDPC codes

I 50% of the times we will have each variable.

I For the first case: Rt+1 = ε(1− (1−Rt)5)2

I For the second case: Rt+1 = ε(1− (1−Rt)5)3

I For the general case:

Rt+1(ε, Rt) = 0.5ε(1− (1−Rt)5)2 + 0.5ε(1− (1−Rt)5)3

I What is wrong with this interpretation?
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Irregular LDPC codes

I This is not the case, because we have more links to variables

with 4 connections.

I From the point of view of the variables:

• 6 variables of degree 3 and 6 variables of degree 4.

I From the point of view of the links:

• 18 links to var. of degree 3 and 24 links to var. of degree 4.
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Irregular LDPC codes

I For point of view of the variables:

Λ(x) =
∑
i

Λix
i

I For point of view of the links to the variables:

λ(x) =
∑

iλix
i−1
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Irregular LDPC codes

I For point of view of the variables:

Λ(x) = 6x3 + 6x4

I For point of view of the links to the variables:

λ(x) = 18x2 + 24x3
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Irregular LDPC codes

I For point of view of the variables:

L(x) = 0.5x3 + 0.5x4

I For point of view of the links to the variables:

λ(x) = 0.4286x2 + 0.5714x3
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Irregular LDPC codes

I 42.86% 57.14%

I For the first case: Rt+1 = ε(1− (1−Rt)5)2

I For the second case: Rt+1 = ε(1− (1−Rt)5)3

I For the general case:

Rt+1(ε, Rt) = 0.4286ε(1− (1−Rt)5)2 + 0.5714ε(1− (1−Rt)5)3
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Irregular LDPC codes

I 42.86% 57.14%

I For the first case: Rt+1 = ε(1− (1−Rt)5)2

I For the second case: Rt+1 = ε(1− (1−Rt)5)3

I For the general case:

Rt+1(ε, Rt) = λ
(
ε(1− (1−Rt)5)

)
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Irregular LDPC codes

I 42.86% 57.14%

I For the first case: Rt+1 = ε(1− (1−Rt)5)2

I For the second case: Rt+1 = ε(1− (1−Rt)5)3

I For the general case:

Rt+1(ε, Rt) = λ (ε(1− ρ(1−Rt)))
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Definitions

I Number of variables with i links:

Λ(x) =
`max∑
i=1

Λix
i

I Number of checks with i links:

P (x) =
rmax∑
i=1

Pix
i

I Number of variables: Λ(1) = n.

I Number of checks: P (1) = n(1− r).

I Rate: r = 1− P (1)
Λ(1).
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Definitions

I Fraction of variables with i links:

L(x) =
Λ(x)

Λ(1)
=

1

Λ(1)

`max∑
i=1

Λix
i

I Fraction of checks with i links:

R(x) =
P (x)

P (1)
=

1

P (1)

rmax∑
i=1

Pix
i

I L(1) = 1.

I R(1) = 1.

I Rate: r = 1− L′(1)
R′(1).

Pérez-Cruz 73



Channel Coding for LDPC codes MLSS 2012

Definitions

I Fraction of links connected to variables with i links:

λ(x) =
Λ′(x)

Λ′(1)
=
L′(x)

L′(1)
=

`max∑
i=1

λix
i−1

I Fraction of links connected to checks with i links:

ρ(x) =
P ′(x)

P ′(1)
=
R′(x)

R′(1)
=

rmax∑
i=1

ρix
i−1

I `avg = 1∫ 1
0 λ(x)dx

.

I ravg = 1∫ 1
0 ρ(x)dx

.

I Rate: r = 1− `avg
ravg

= 1−
∫ 1

0 ρ(x)∫ 1
0 λ(x)

.
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Sequence of Capacity Achieving Codes

I Multiplicative Gap to Capacity:

r(λ, ρ) = (1− δ)(1− εBP )

If delta were zero the BP decoder achieves capacity.

I It can be proven that

δ(λ, ρ) ≥
rravg−1(1− r)

1 + rravg−1(1− r)

I Meaning that the avarage right degree distribution needs to go

to infinity for the codes to get to capacity.

I We can only expect to design a sequence of capacity achieving

codes.
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Sequence of Capacity Achieving Codes

I We say that the sequence {λ(N), ρ(N)}N≥1 achieve capacity on

the BEC(ε) if:

lim
N→∞

r(λ(N), ρ(N)) = 1− ε

lim
N→∞

δ(λ(N), ρ(N)) = 0

I Example for α−1 ∈ N and N :

λ
(N)
α (x) =

λ̂
(N)
α (x)

λ̂
(N)
α (1)

λ̂
(N)
α (x) =

N∑
i=1

(
α
i

)
(−1)i−1xi

ρα(x) = x1/α
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Example of a Sequence of Capacity Achieving Codes

I We can obtain that:

r(λ, ρ) =

N
α

(
α
N

)
(−1)N−1

(
1− 1

N

)
1− 1

N
N
α

(
α
N

)
(−1)N−1

δ(λ, ρ) ≤
1− N

α

(
α
N

)
(−1)N−1

N − N
α

(
α
N

)
(−1)N−1

I if you set Nα

(
α
N

)
(−1)N−1 = 1− ε, we can reach capacity as 1/α

and N goes to infinity.
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Optimization of Irregular LDPC codes

I Sufficient Condition for obtaining the ML codeword:

λ (ε(1− ρ(1− x)))− x ≤ 0 x ∈ [0,1]

I If we fixed ρ(x), the previous equation is linear in λi.

I For a fixed ρ(x), the rate is an increasing function of
∑
i λi/i.

I Optimization Procedure:

max
λi≥0

∑
i

λi
i

∣∣∣∣∣
`max∑
i=2

λi = 1;λ (ε(1− ρ(1− x)))− x ≤ 0, x ∈ [0,1]


I We can now fix λ(x) and optimize ρ(x) [Not necessary].
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Optimization of Irregular LDPC codes

I Optimization procedure:

• Fix ravg:

ρ(x) =
r(r + 1− ravg)

ravg
xr−1 +

ravg − r(r + 1− ravg)
ravg

xr

• Select the objective rate r and `max.

• Run the optimization problem

I Example: ravg = 6, `max = 8 and r = 0.5:

λ(x) = 0.409x+ 0.202x2 + 0.0768x3 + 0.1971x6 + 0.1151x7

ρ(x) = x5 r = 0.5004
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Why Machine Learning can help?

I The decoder of LDPC codes is based on BP.

I We have stronger Approximate Inference Algorithm.

I Expectation Propagation:

q̂(x) = arg minDKL(p(x|y)||q(x))

I For q(x) =
∏n
`=1 q(xi), we recover BP.

I For q(x) =
∏n
`=1 q(xi|πxi)

• We impose a chain over the the variables.

• We get a more accurate approximation.
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EP with a Tree-Structure

I For this set of variables the PD fails.

I Now we enforce q(V3|V2).
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EP with a Tree-Structure

I For this set of variables the PD fails.

I Now we enforce q(V3|V2).

I And F2 tells V1 that is blue.

I Why?
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EP with a Tree-Structure

I For this set of variables the PD fails.

I Now we enforce q(V3|V2).

I And F2 tells V1 that is blue.

I Now F2 tells V3 that is blue.
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EP with a Tree-Structure

I For this set of variables the PD fails.

I Now we enforce q(V3|V2).

I And F2 tells V1 that is blue.

I Now F1 tells V3 that is blue.

I Now F3 tells V2 that is red.
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TEP Algorithm

I Initialization: Remove all variables that have not been erased.

• Change the parity of those that are equal to one.

I Iteration:

• Look for a check node of degree 1: De-erase the associated

variable.

• Look for a Check node of degree 2: Substitute one variable

by the other.

• Repeat until decoding.
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TEP Algorithm

V1

V2

P1

P2

P3

V1V2

P1 P2

P3

P2

P3

V1
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Useful TEP Algorithm

V1

V2

V3

P1

P2

P3

P4

V1

V3

P1

P2

P4
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Results

I λ = x2 and ρ = x5.

I n = 28 (◦),
n = 29 (�),

n = 210 (×) and,

n = 211 (B).
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Results

I λ(x) = 1/6x+ 5/6x3 and

ρ(x) = x5.

I n = 29 (�),

n = 210 (×),

n = 211 (B) and,

n = 212 (�).
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Extensions

I These results can be extended to more realistic channels:

• BSC.

• AWGN.

I Using ExIT charts.

I Results only approximate.

I Polar Codes.
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Take Home Message

I There are problems in Information Theory that can be solved

using Information Theory

I My view:

• Non-asymptotic Information Theory.

• Rate-Distortion.

• Network Coding.
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Thanks!
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