Channel Coding with LDPC codes

Fernando Pérez-Cruz

University Carlos III in Madrid

April 2012

Main Results in Information Theory

- Achievable Source Encoding:

$$
R \geq H(M)
$$

- Reliable Transmission Rate:

$$
R \leq I(X ; Y)
$$

- Separation Principle: No loss of optimality if perform separately.

Channel Encoding

- The source (encoder) provides symbols $\mathbf{m} \in\{1,2, \ldots, M\}$
- The channel encoder assigns them a bitstream of n symbols:

$$
\mathbf{x}=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]
$$

- If the messages are also binary symbols:

$$
\mathbf{m}=\left[\begin{array}{llll}
m_{1} & m_{2} & \cdots & m_{k}
\end{array}\right]
$$

- The rate is given by:

$$
R=\frac{\log _{2} M}{n}=\frac{k}{n}
$$

Linear Channel Encoding

- Linear transformation from source bits to encoded bits:

$$
\mathrm{x}=\mathrm{mG}=\mathrm{m}\left[\begin{array}{ll}
\mathrm{I} & \mathrm{P}
\end{array}\right]
$$

G is a $k \times n$ matrix that adds $n-k$ redundancy bits to \mathbf{m}.

- Independent channel realizations:

$$
y_{i}=x_{i}+z_{i} \quad \forall i=1, \ldots, n,
$$

z_{i} is iid noise.

- At the channel decoder we want to recover \mathbf{x} from \mathbf{y}.

$$
\widehat{\mathbf{x}}=\underset{\mathbf{x}}{\operatorname{argmax}} \max _{C W} p(\mathbf{y} \mid \mathbf{x})=\underset{\mathbf{x}}{\operatorname{argmax}} \prod_{C W=1}^{n} p\left(\mathbf{y}_{\ell} \mid \mathbf{x}_{\ell}\right)
$$

Syndrome and Parity Check Matrix

- The dual space of the linear space G:

$$
\mathbf{H}=\left[\begin{array}{ll}
-\mathbf{P}^{\top} & \mathbf{I}
\end{array}\right]
$$

- Syndrome:

$$
\mathrm{s}=\mathrm{yH} \mathbf{H}^{\top}=(\mathrm{x}+\mathrm{z}) \mathbf{H}^{\top}=\mathrm{z} \mathbf{H}^{\top}
$$

- Why is $\mathrm{xH}^{\top}=0$?
- s uniquely identifies the error pattern.
- s has 2^{n-k} entries.

Solutions to Channel Coding

- Algebraic Code (40's-70's):
- Linear encoding and decoding
- Limited to minimum distance.
- Convolutional Codes (60's-80's):
- Linear encoding and decoding.
- Decoding exponential in the memory.
- LDPC and Turbo Codes (63 \& 90's-10's):
- Almost linear encoding and decoding.
- Almost achieve capacity.

Tanner Graph (Factor Graph)

- Given a parity Check Matrix

$$
\mathbf{H}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right]
$$

what do we know?

- What restriction do we have over x_{1}, x_{5}, x_{6} and x_{7} ?

Tanner Graph (Factor Graph)

- Given a parity Check Matrix

$$
\mathbf{H}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right]
$$

what do we know?

- What restriction do we have over x_{1}, x_{5}, x_{6} and x_{7} ?
- and over x_{2}, x_{4}, x_{6} and $x_{7} ?$ or x_{3}, x_{4}, x_{5} and x_{7} ?

Tanner Graph (Factor Graph)

- Given a parity Check Matrix

$$
\mathbf{H}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right]
$$

what do we know?

- What restriction do we have over x_{1}, x_{5}, x_{6} and x_{7} ?
- and over x_{2}, x_{4}, x_{6} and x_{7} ? or x_{3}, x_{4}, x_{5} and x_{7} ?
- Remember that:

$$
\mathrm{xH}^{\top}=0
$$

- Hence?

Bipartite Graph

Bipartite Graph

Maximum Likelihood Decoder

- ML solution:

$$
\widehat{\mathrm{x}}=\underset{\mathrm{x}}{\operatorname{argmax}} \mathrm{C}_{C W} p(\mathbf{y} \mid \mathbf{x})=\operatorname{argmax} \prod_{\ell=1}^{n} p\left(\mathbf{y}_{\ell} \mid \mathbf{x}_{\ell}\right) \prod_{j=1}^{n-k} \delta\left(\mathrm{xh}_{j}^{\top}=0\right)
$$

- ML solution is exponential in n.
- Bitwise MAP solution:

$$
\widehat{\mathbf{x}}_{i}=\underset{\mathbf{x}_{i} \in\{0,1\}}{\operatorname{argmax}} p\left(\mathbf{x}_{i} \mid \mathbf{y}\right)=\underset{v \in\{0,1\}}{\operatorname{argmax}} \sum_{x_{i}=v} \prod_{\ell=1}^{n} p\left(\mathbf{y}_{\ell} \mid \mathbf{x}_{\ell}\right) \prod_{j=1}^{n-k} \delta\left(\mathbf{x h}_{j}^{\top}=0\right)
$$

- Still exponential in n, but ...

Computing $p\left(x_{i}\right)$

- If we ignore the graph structure:

$$
p(\mathbf{x} \mid \mathbf{y})=\frac{p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x})}{p(\mathbf{y})}=\frac{1}{p(\mathbf{y})} \frac{1}{2^{k}} \prod_{\ell=1}^{n} p\left(\mathbf{y}_{\ell} \mid \mathbf{x}_{\ell}\right) \prod_{j=1}^{n-k} \delta\left(\mathbf{x h}_{j}^{\top}=0\right)
$$

- For binary variables we need to compute 2^{n} elements and perform $2^{n}-1$ sums for computing:

$$
p\left(\mathbf{x}_{i}=v \mid \mathbf{y}\right)=\sum_{\substack{\mathbf{x} \\ x_{i}=v}} p(\mathbf{x} \mid \mathbf{y})
$$

- Can we use the graph structure to reduced this computational complexity?

Computing $p\left(x_{i}\right)$

- If we ignore the graph structure:

$$
p(\mathbf{x} \mid \mathbf{y})=\frac{p(\mathbf{y} \mid \mathbf{x}) p(\mathrm{x})}{p(\mathbf{y})}=\frac{1}{p(\mathbf{y})} \frac{1}{2^{k}} \prod_{\ell=1}^{n} p\left(\mathbf{y}_{\ell} \mid \mathbf{x}_{\ell}\right) \prod_{j=1}^{n-k} \delta\left(\mathbf{x h}_{j}^{\top}=0\right)
$$

- For binary variables we need to compute 2^{n} elements and perform $2^{n}-1$ sums for computing:

$$
p\left(\mathbf{x}_{i}=v \mid \mathbf{y}\right)=\sum_{\substack{\mathbf{x} \\ x_{i}=v}} p(\mathbf{x} \mid \mathbf{y})
$$

- Can we use the graph structure to reduced this computational complexity?
- Yes, we can!

An Easy Example

$$
p(\mathbf{x} \mid \mathbf{y}) \propto \prod_{\ell=1}^{7} p\left(\mathbf{y}_{\ell} \mid \mathbf{x}_{\ell}\right) \prod_{j=1}^{4} \delta\left(\mathbf{x h}_{j}^{\top}=0\right)
$$

- We can compute $p\left(x_{1}\right)$ from:

$$
p\left(x_{1}\right) \propto \sum_{\substack{x_{2}, x_{3}, x_{4} \\ x_{5}, x_{6}, x_{7}}} f_{A}\left(x_{1}, x_{2}, x_{3}\right) f_{B}\left(x_{2}, x_{5}, x_{6}\right) f_{C}\left(x_{5}, x_{7}\right) f_{D}\left(x_{3}, x_{4}\right)
$$

An Easy Example

- We can express the sum as follows:

$$
p\left(x_{1}\right) \propto \sum_{x_{2}, x_{3}} f_{A}\left(x_{1}, x_{2}, x_{3}\right) \sum_{x_{4}} f_{D}\left(x_{3}, x_{4}\right) \sum_{x_{5}, x_{6}} f_{B}\left(x_{2}, x_{5}, x_{6}\right) \sum_{x_{7}} f_{C}\left(x_{5}, x_{7}\right)
$$

- We define:

$$
\begin{aligned}
r_{C \rightarrow x_{5}}\left(x_{5}\right) & =\sum_{x_{7}} f_{C}\left(x_{5}, x_{7}\right) \\
r_{C \rightarrow x_{5}}\left(x_{5}=0\right) & =f_{C}\left(x_{5}=0, x_{7}=0\right)+f_{C}\left(x_{5}=0, x_{7}=1\right) \\
r_{C \rightarrow x_{5}}\left(x_{5}=1\right) & =f_{C}\left(x_{5}=1, x_{7}=0\right)+f_{C}\left(x_{5}=1, x_{7}=1\right)
\end{aligned}
$$

- We need to compute 4 components and perform 2 sums.

An Easy Example

- We can express the sum as follows:

$$
p\left(x_{1}\right) \propto \sum_{x_{2}, x_{3}} f_{A}\left(x_{1}, x_{2}, x_{3}\right) \sum_{x_{4}} f_{D}\left(x_{3}, x_{4}\right) \sum_{x_{5}, x_{6}} f_{B}\left(x_{2}, x_{5}, x_{6}\right) r_{C \rightarrow x_{5}}\left(x_{5}\right)
$$

- Now we define:

$$
\begin{aligned}
& r_{B \rightarrow x_{2}}\left(x_{2}\right)=\sum_{x_{5}, x_{6}} f_{B}\left(x_{2}, x_{5}, x_{6}\right) r_{C \rightarrow x_{5}}\left(x_{5}\right) \\
& r_{D \rightarrow x_{3}}\left(x_{3}\right)=\sum_{x_{4}} f_{D}\left(x_{3}, x_{4}\right)
\end{aligned}
$$

- We need to compute $8+4$ components and perform $6+2$ sums.

An Easy Example

- We can express the sum as follows:

$$
p\left(x_{1}\right) \propto \sum_{x_{2}, x_{3}} f_{A}\left(x_{1}, x_{2}, x_{3}\right) r_{B \rightarrow x_{2}}\left(x_{2}\right) r_{D \rightarrow x_{3}}\left(x_{3}\right)
$$

- Now we define:

$$
r_{A \rightarrow x_{1}}\left(x_{1}\right)=\sum_{x_{2}, x_{3}} f_{A}\left(x_{1}, x_{2}, x_{3}\right) r_{B \rightarrow x_{2}}\left(x_{2}\right) r_{D \rightarrow x_{3}}\left(x_{3}\right)
$$

- We need to compute 8 components and perform 6 sums.
- Leaving $p\left(x_{1}\right) \propto r_{A \rightarrow x_{1}}\left(x_{1}\right)$ and:

$$
p\left(x_{1}=1\right)=\frac{r_{A \rightarrow x_{1}}\left(x_{1}=1\right)}{r_{A \rightarrow x_{1}}\left(x_{1}=1\right)+r_{A \rightarrow x_{1}}\left(x_{1}=0\right)}
$$

An Easy Example

- We have computed $p\left(x_{1}\right)$ computing 26 terms and performing 17 sums.
- The direct enumeration would lead to computing 128 terms and performing 127 sums.
- Moreover the proposed approach gives us the partition function:

$$
Z=r_{A \rightarrow x_{1}}\left(x_{1}=0\right)+r_{A \rightarrow x_{1}}\left(x_{1}=1\right)
$$

- For the other marginals we need to do a bit more work.
- Drawback: We need to sort the variables.

An Easy Example

- We have computed $p\left(x_{1}\right)$ computing 26 terms and performing 17 sums.
- The direct enumeration would lead to computing 128 terms and performing 127 sums.
- Moreover the proposed approach gives us the partition function:

$$
Z=r_{A \rightarrow x_{1}}\left(x_{1}=0\right)+r_{A \rightarrow x_{1}}\left(x_{1}=1\right)
$$

- For the other marginals we need to do a bit more work.
- Drawback: We need to sort the variables. Do we really?

Message Passing Algorithms

- We do not need to sort the variables in order to compute Z or the marginals.
- We can use only local computations in the graph to obtain these quantities.
- Simple algorithm:
- The variables nodes tell each factors about themselves.
- The factors tell the variables what their value should be.
- Iterate until convergence.
- Convergence is achieved in finite number of iterations.

Message Passing Algorithms

- Variable to factor:
- Send the unknown information about the factor.
- Send information to local factors.
- Factor to Variable:
- Send the unknown information about the variable.
- Send information to local variable nodes.

Message Passing Algorithms

- Variable to factor:
- Send the unknown information about the factor.
- Send information to local factors. x_{2} to A, B and E_{2}.
- Factor to Variable:
- Send the unknown information about the variable.
- Send information to local variable nodes.

Message Passing Algorithms

- Variable to factor:
- Send the unknown information about the factor.
- Send information to local factors. x_{2} to A, B and E_{2}.
- Factor to Variable:
- Send the unknown information about the variable.
- Send information to local variable nodes. A to x_{1}, x_{2} and x_{3}.

Message Passing Algorithms

- Variable to factor:
- Send the unknown information about the factor.
- Send information to local factors. x_{2} to A, B and E_{2}.

$$
q_{x 2 \rightarrow A}\left(x_{2}\right)=r_{B \rightarrow x_{2}}\left(x_{2}\right) r_{E_{2} \rightarrow x_{2}}\left(x_{2}\right)
$$

- Factor to Variable:
- Send the unknown information about the variable.
- Send information to local variable nodes. A to x_{1}, x_{2} and x_{3}.

Message Passing Algorithms

- Variable to factor:
- Send the unknown information about the factor.
- Send information to local factors. x_{2} to A, B and E_{2}.

$$
q_{x 2 \rightarrow A}\left(x_{2}\right)=r_{B \rightarrow x_{2}}\left(x_{2}\right) r_{E_{2} \rightarrow x_{2}}\left(x_{2}\right)
$$

- Factor to Variable:
- Send the unknown information about the variable.
- Send information to local variable nodes. A to x_{1}, x_{2} and x_{3}.

$$
r_{A \rightarrow x_{2}}\left(x_{2}\right)=\sum_{x_{1}, x_{3}} f_{A}\left(x_{1}, x_{2}, x_{3}\right) q_{x_{1} \rightarrow A}\left(x_{1}\right) q_{x_{3} \rightarrow A}\left(x_{3}\right)
$$

Message Passing Algorithms

- Variable n to factor J :

$$
q_{x_{n} \rightarrow J}\left(x_{n}\right)=\prod_{J^{\prime} \in \mathcal{M}(n) \backslash J} r_{J^{\prime} \rightarrow x_{n}}\left(x_{n}\right)
$$

- Factor J to variable n :

$$
r_{J \rightarrow x_{n}}\left(x_{n}\right)=\sum_{\mathbf{x}_{J} \backslash n} f_{J}\left(\mathbf{x}_{J}\right) \prod_{n^{\prime} \in \mathcal{N}(J) \backslash n} q_{x_{n^{\prime}} \rightarrow J}\left(x_{n^{\prime}}\right)
$$

- $\mathcal{M}(n)$ are the factors in which x_{n} is included.
- $\mathcal{N}(J)$ are the variable nodes for factor J.
- \mathbf{x}_{J} are the variables for factor J.

Message Passing Algorithms

- We do not need to sort the sums.
- We do not need to know the structure of the whole graph.
- We only need local information:
- which variable is connected to which factor.
- which factor is connected to which variable.
- For tree-like graphs the solution is exact and it finishes in a finite number of iterations.
- For general graphs this algorithm is not applicable.
- ... but it typically works well.

Low Density Parity Check Codes

- If we have few ones in the parity check matrix,

Low Density Parity Check Codes

- If we have few ones in the parity check matrix,
- ... we should expect few loops.
- Locally it will look like a tree

Low Density Parity Check Codes

- If we have few ones in the parity check matrix,
- ... we should expect few loops.
- Locally it will look like a tree
-... and if we run the message passing algorithm for a finite iterations we will not get harmful feedback.
- And if the density is large enough it leads to 'good codes'.
- 3 ones per column seems to work ... good enough.

Low density?

Low density?

Low density

Low density

How do we know LDPC codes are 'good'?

- We select a simple channel model:
- Binary Erasure Channel (BEC).
- We simplify the message passing algorithm:
- Peeling Decoder.
- We analyze its behavior:
- Density Evolution.
- We show it achieves channel capacity.
- Optimized LDPC codes.

Binary Erasure Channe

Binary Erasure Channe

- BEC is a simple channel, because ...

Binary Erasure Channe

- BEC is a simple channel, because ...
- we either have total knowledge of the transmitted bit.
- or we are completely cluless.
- if $y_{\ell}=0$ or $y_{\ell}=1$:

$$
\begin{array}{ll}
p\left(\mathrm{x}_{\ell}=0 \mid y_{\ell}=0\right)=1 & p\left(\mathrm{x}_{\ell}=1 \mid y_{\ell}=0\right)=0 \\
p\left(\mathrm{x}_{\ell}=0 \mid y_{\ell}=1\right)=0 & p\left(\mathrm{x}_{\ell}=1 \mid y_{\ell}=1\right)=1
\end{array}
$$

- if $y_{\ell}=$?:

$$
p\left(\mathrm{x}_{\ell}=0 \mid y_{\ell}=?\right)=0.5 \quad p\left(\mathrm{x}_{\ell}=1 \mid y_{\ell}=?\right)=0.5
$$

Message Passing over the BEC

- Initial Message:

$$
r_{\mathbf{x}_{2} \rightarrow A}\left(x_{2}\right) \propto p\left(\mathbf{x}_{2} \mid y_{2}\right)
$$

- Message from factors to Variables:

$$
r_{A \rightarrow x_{2}}\left(x_{2}\right)=\sum_{x_{1}, x_{3}} f_{A}\left(x_{1}, x_{2}, x_{3}\right) q_{x_{1} \rightarrow A}\left(x_{1}\right) q_{x_{3} \rightarrow A}\left(x_{3}\right)
$$

- What happens if either x_{1} or x_{2} are erased?
- What happens if neither are erased?
- After the first iteration:

$$
p\left(x_{2} \mid y_{2}, y_{1}, y_{2}, y_{5}, y_{6}\right) \propto p\left(\mathbf{x}_{2} \mid y_{2}\right) r_{A \rightarrow x_{2}}\left(x_{2}\right) r_{B \rightarrow x_{2}}\left(x_{2}\right)
$$

Message Passing over the BEC

- Initial Message:

$$
r_{\mathbf{x}_{2} \rightarrow A}\left(x_{2}\right) \propto p\left(\mathbf{x}_{2} \mid y_{2}\right)
$$

- Message from factors to Variables:

$$
r_{A \rightarrow x_{2}}\left(x_{2}\right)=\sum_{x_{1}, x_{3}} f_{A}\left(x_{1}, x_{2}, x_{3}\right) q_{x_{1} \rightarrow A}\left(x_{1}\right) q_{x_{3} \rightarrow A}\left(x_{3}\right)
$$

- What happens if either x_{1} or x_{2} are erased?
- What happens if neither are erased?
- After the first iteration:

$$
p\left(x_{2} \mid y_{2}, y_{1}, y_{2}, y_{5}, y_{6}\right) \propto p\left(\mathbf{x}_{2} \mid y_{2}\right) r_{A \rightarrow x_{2}}\left(x_{2}\right) r_{B \rightarrow x_{2}}\left(x_{2}\right)
$$

- What happens if one of them is not erased?

Example

- blue is zero.
- red is one.

Example

Example

Example

Example

Message Passing over the BEC

- From this example we reduce the message passing algorithm to two simple rules:
- Variable is de-erase if it gets a single de-erasure message.
- Factor sends a de-erasure message if all the other variables are known.
- The Peeling decoder:

1. Remove from the bipartite graph all known variables.
2. Search for factors with a single variable.
3. Remove those variables from the graph. Go to 2.

Example

Example

Can the Peeling Decoder fail?

- When all the factors have two or more outputs.
- Can the solution still be unique?
- It dependens.
- It never makes a mistake, though

Analysis

- How good is our LDPC code?
- What error rate in the channel can be decoded?
- Is it equal to the channel capacity?
- Density Evolution answers these questions for LDPC code.
- Reminder: For the BEC $C=1-\epsilon$.
- We first analyze a regular LDPC code with 3 ones per column and rate $1 / 2$.

Detangle

First Step

- If the erasure probability in the channel is ϵ, what is the probability that this variable is erased?

First Step

- If the erasure probability in the channel is ϵ, what is the probability that this variable is erased?

Second Step (a)

- If the erasure probability in the channel is ϵ, what is the probability that each factor sends an erased message?

Second Step (a)

- If the erasure probability in the channel is ϵ, what is the probability that each factor sends an erased message?

- It sends an erased message if any of the variables is erased:

$$
L 1=1-(1-\epsilon)^{5}
$$

Second Step (b)

- If the erasure probability in the channel is ϵ, what is the probability that the top variable is erased once it has received the messages from the factors?

Second Step (b)

- If the erasure probability in the channel is ϵ, what is the probability that the top variable is erased once it has received the messages from the factors?

- It is erased is any of the messages are erased:

$$
R 1=\epsilon(L 1)^{3}=\epsilon\left(1-(1-\epsilon)^{5}\right)^{3}
$$

General Step

- The variable in next layer variable is erased with probability:

$$
R_{t+1}=\epsilon\left(1-\left(1-R_{t}\right)^{5}\right)^{2}
$$

- Why did I change the 3 for the 2 ?

General Step

- The variable in next layer variable is erased with probability:

$$
R_{t+1}\left(\epsilon, R_{t}\right)=\epsilon\left(1-\left(1-R_{t}\right)^{5}\right)^{2}
$$

- In this recursion, we can expect two things to happen:
- Either R_{t+1} is reduced in each iteration to zero.
- Or for some $t: R_{t+1}=R_{t}$. The algorithm stops decoding.
- What it the maximum ϵ for which the algorithm recovers the transmitted word?

Matlab Demo

Irregular LDPC codes

- For the Regular LDPC codes maximum error 0.4294 with DP decoding.
- For the Regular LDPC codes maximum error 0.48815 with MAP decoding.
- Channel capacity 0.5.
- Can we get closer to capacity?
- Using Irregular LDPC codes.

Irregular LDPC codes

Irregular LDPC codes

- 50% of the times we will have each variable.
- For the first case: $R_{t+1}=\epsilon\left(1-\left(1-R_{t}\right)^{5}\right)^{2}$
- For the second case: $R_{t+1}=\epsilon\left(1-\left(1-R_{t}\right)^{5}\right)^{3}$
- For the general case:

$$
R_{t+1}\left(\epsilon, R_{t}\right)=0.5 \epsilon\left(1-\left(1-R_{t}\right)^{5}\right)^{2}+0.5 \epsilon\left(1-\left(1-R_{t}\right)^{5}\right)^{3}
$$

- What is wrong with this interpretation?

Irregular LDPC codes

- This is not the case, because we have more links to variables with 4 connections.
- From the point of view of the variables:
- 6 variables of degree 3 and 6 variables of degree 4.
- From the point of view of the links:
- 18 links to var. of degree 3 and 24 links to var. of degree 4.

Irregular LDPC codes

- For point of view of the variables:

$$
\wedge(x)=\sum_{i} \wedge_{i} x^{i}
$$

- For point of view of the links to the variables:

$$
\lambda(x)=\sum i \lambda_{i} x^{i-1}
$$

Irregular LDPC codes

- For point of view of the variables:

$$
\wedge(x)=6 x^{3}+6 x^{4}
$$

- For point of view of the links to the variables:

$$
\lambda(x)=18 x^{2}+24 x^{3}
$$

Irregular LDPC codes

- For point of view of the variables:

$$
L(x)=0.5 x^{3}+0.5 x^{4}
$$

- For point of view of the links to the variables:

$$
\lambda(x)=0.4286 x^{2}+0.5714 x^{3}
$$

Irregular LDPC codes

$$
42.86 \% \quad 57.14 \%
$$

- For the first case: $R_{t+1}=\epsilon\left(1-\left(1-R_{t}\right)^{5}\right)^{2}$
- For the second case: $R_{t+1}=\epsilon\left(1-\left(1-R_{t}\right)^{5}\right)^{3}$
- For the general case:

$$
R_{t+1}\left(\epsilon, R_{t}\right)=0.4286 \epsilon\left(1-\left(1-R_{t}\right)^{5}\right)^{2}+0.5714 \epsilon\left(1-\left(1-R_{t}\right)^{5}\right)^{3}
$$

Irregular LDPC codes

$$
42.86 \% \quad 57.14 \%
$$

- For the first case: $R_{t+1}=\epsilon\left(1-\left(1-R_{t}\right)^{5}\right)^{2}$
- For the second case: $R_{t+1}=\epsilon\left(1-\left(1-R_{t}\right)^{5}\right)^{3}$
- For the general case:

$$
R_{t+1}\left(\epsilon, R_{t}\right)=\lambda\left(\epsilon\left(1-\left(1-R_{t}\right)^{5}\right)\right)
$$

Irregular LDPC codes

$$
42.86 \% \quad 57.14 \%
$$

- For the first case: $R_{t+1}=\epsilon\left(1-\left(1-R_{t}\right)^{5}\right)^{2}$
- For the second case: $R_{t+1}=\epsilon\left(1-\left(1-R_{t}\right)^{5}\right)^{3}$
- For the general case:

$$
R_{t+1}\left(\epsilon, R_{t}\right)=\lambda\left(\epsilon\left(1-\rho\left(1-R_{t}\right)\right)\right)
$$

Definitions

- Number of variables with i links:

$$
\Lambda(x)=\sum_{i=1}^{\ell_{\max }} \wedge_{i} x^{i}
$$

- Number of checks with i links:

$$
P(x)=\sum_{i=1}^{r_{\max }} P_{i} x^{i}
$$

- Number of variables: $\wedge(1)=n$.
- Number of checks: $P(1)=n(1-r)$.
- Rate: $r=1-\frac{P(1)}{\Lambda(1)}$.

Definitions

- Fraction of variables with i links:

$$
L(x)=\frac{\wedge(x)}{\Lambda(1)}=\frac{1}{\Lambda(1)} \sum_{i=1}^{\ell \max } \wedge_{i} x^{i}
$$

- Fraction of checks with i links:

$$
R(x)=\frac{P(x)}{P(1)}=\frac{1}{P(1)} \sum_{i=1}^{r \max } P_{i} x^{i}
$$

- $L(1)=1$.
$-R(1)=1$.
- Rate: $r=1-\frac{L^{\prime}(1)}{R^{\prime}(1)}$.

Definitions

- Fraction of links connected to variables with i links:

$$
\lambda(x)=\frac{\Lambda^{\prime}(x)}{\Lambda^{\prime}(1)}=\frac{L^{\prime}(x)}{L^{\prime}(1)}=\sum_{i=1}^{\ell \max } \lambda_{i} x^{i-1}
$$

- Fraction of links connected to checks with i links:

$$
\rho(x)=\frac{P^{\prime}(x)}{P^{\prime}(1)}=\frac{R^{\prime}(x)}{R^{\prime}(1)}=\sum_{i=1}^{r_{\max }} \rho_{i} x^{i-1}
$$

- $\ell_{\text {avg }}=\frac{1}{\int_{0}^{1} \lambda(x) d x}$.
- $r_{\text {avg }}=\frac{1}{\int_{0}^{1} \rho(x) d x}$.
- Rate: $r=1-\frac{\ell_{\text {avg }}}{r_{\text {avg }}}=1-\frac{\int_{0}^{1} \rho(x)}{\int_{0}^{1} \lambda(x)}$.

Sequence of Capacity Achieving Codes

- Multiplicative Gap to Capacity:

$$
r(\lambda, \rho)=(1-\delta)\left(1-\epsilon_{B P}\right)
$$

If delta were zero the BP decoder achieves capacity.

- It can be proven that

$$
\delta(\lambda, \rho) \geq \frac{r^{r_{a v g}-1}(1-r)}{1+r^{r_{a v g}-1}(1-r)}
$$

- Meaning that the avarage right degree distribution needs to go to infinity for the codes to get to capacity.
- We can only expect to design a sequence of capacity achieving codes.

Sequence of Capacity Achieving Codes

- We say that the sequence $\left\{\lambda^{(N)}, \rho^{(N)}\right\}_{N \geq 1}$ achieve capacity on the $B E C(\epsilon)$ if:

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} r\left(\lambda^{(N)}, \rho^{(N)}\right)=1-\epsilon \\
& \lim _{N \rightarrow \infty} \delta\left(\lambda^{(N)}, \rho^{(N)}\right)=0
\end{aligned}
$$

- Example for $\alpha^{-1} \in \mathbb{N}$ and N :

$$
\begin{aligned}
\lambda_{\alpha}^{(N)}(x) & =\frac{\hat{\lambda}_{\alpha}^{(N)}(x)}{\widehat{\lambda}_{\alpha}^{(N)}(1)} \quad \hat{\lambda}_{\alpha}^{(N)}(x)=\sum_{i=1}^{N}\binom{\alpha}{i}(-1)^{i-1} x^{i} \\
\rho_{\alpha}(x) & =\mathrm{x}^{1 / \alpha}
\end{aligned}
$$

Example of a Sequence of Capacity Achieving Codes

- We can obtain that:

$$
\begin{aligned}
& r(\lambda, \rho)=\frac{\frac{N}{\alpha}\binom{\alpha}{N}(-1)^{N-1}\left(1-\frac{1}{N}\right)}{1-\frac{1}{N} \frac{N}{\alpha}\binom{\alpha}{N}(-1)^{N-1}} \\
& \delta(\lambda, \rho) \leq \frac{1-\frac{N}{\alpha}\binom{\alpha}{N}(-1)^{N-1}}{N-\frac{N}{\alpha}\binom{\alpha}{N}(-1)^{N-1}}
\end{aligned}
$$

- if you set $\frac{N}{\alpha}\binom{\alpha}{N}(-1)^{N-1}=1-\epsilon$, we can reach capacity as $1 / \alpha$ and N goes to infinity.

Optimization of Irregular LDPC codes

- Sufficient Condition for obtaining the ML codeword:

$$
\lambda(\epsilon(1-\rho(1-x)))-x \leq 0 \quad x \in[0,1]
$$

- If we fixed $\rho(x)$, the previous equation is linear in λ_{i}.
- For a fixed $\rho(x)$, the rate is an increasing function of $\sum_{i} \lambda_{i} / i$.
- Optimization Procedure:

$$
\max _{\lambda_{i} \geq 0}\left\{\sum_{i} \frac{\lambda_{i}}{i} \sum_{i=2}^{\ell_{\max }} \lambda_{i}=1 ; \lambda(\epsilon(1-\rho(1-x)))-x \leq 0, x \in[0,1]\right\}
$$

- We can now fix $\lambda(x)$ and optimize $\rho(x)$ [Not necessary].

Optimization of Irregular LDPC codes

- Optimization procedure:
- Fix ravg:

$$
\rho(x)=\frac{r\left(r+1-r_{a v g}\right)}{r_{a v g}} x^{r-1}+\frac{r_{a v g}-r\left(r+1-r_{a v g}\right)}{r_{a v g}} x^{r}
$$

- Select the objective rate r and $\ell_{\text {max }}$.
- Run the optimization problem
- Example: $r_{\text {avg }}=6, \ell_{\max }=8$ and $r=0.5$:

$$
\begin{aligned}
& \lambda(x)=0.409 x+0.202 x^{2}+0.0768 x^{3}+0.1971 x^{6}+0.1151 x^{7} \\
& \rho(x)=x^{5} \quad r=0.5004
\end{aligned}
$$

Why Machine Learning can help?

- The decoder of LDPC codes is based on BP.
- We have stronger Approximate Inference Algorithm.
- Expectation Propagation:

$$
\widehat{q}(\mathbf{x})=\arg \min D_{K L}(p(\mathbf{x} \mid \mathbf{y}) \| q(\mathbf{x}))
$$

- For $q(\mathrm{x})=\prod_{\ell=1}^{n} q\left(x_{i}\right)$, we recover BP.
- For $q(\mathbf{x})=\prod_{\ell=1}^{n} q\left(x_{i} \mid \pi_{x_{i}}\right)$
- We impose a chain over the the variables.
- We get a more accurate approximation.

EP with a Tree-Structure

- For this set of variables the PD fails.
- Now we enforce $q\left(V_{3} \mid V_{2}\right)$.

EP with a Tree-Structure

- For this set of variables the PD fails.
- Now we enforce $q\left(V_{3} \mid V_{2}\right)$.
- And F_{2} tells V_{1} that is blue.
- Why?

EP with a Tree-Structure

- For this set of variables the PD fails.
- Now we enforce $q\left(V_{3} \mid V_{2}\right)$.
- And F_{2} tells V_{1} that is blue.
- Now F_{2} tells V_{3} that is blue.

EP with a Tree-Structure

- For this set of variables the PD fails.
- Now we enforce $q\left(V_{3} \mid V_{2}\right)$.
- And F_{2} tells V_{1} that is blue.
- Now F_{1} tells V_{3} that is blue.
- Now F_{3} tells V_{2} that is red.

V_{4}

TEP Algorithm

- Initialization: Remove all variables that have not been erased.
- Change the parity of those that are equal to one.
- Iteration:
- Look for a check node of degree 1: De-erase the associated variable.
- Look for a Check node of degree 2: Substitute one variable by the other.
- Repeat until decoding.

TEP Algorithm

Useful TEP Algorithm

Results

- $\lambda=x^{2}$ and $\rho=x^{5}$.
- $n=2^{8}$ (o),
$n=2^{9}$ (\square),
$n=2^{10}(\times)$ and, $n=2^{11}(\triangleright)$.

Results

- $\lambda(x)=1 / 6 x+5 / 6 x^{3}$ and

$$
\rho(x)=x^{5} .
$$

- $n=2^{9}(\square)$,
$n=2^{10}(\times)$,
$n=2^{11}(\triangleright)$ and, $n=2^{12}(\diamond)$.

Extensions

- These results can be extended to more realistic channels:
- BSC.
- AWGN.
- Using ExIT charts.
- Results only approximate.
- Polar Codes.

Take Home Message

- There are problems in Information Theory that can be solved using Information Theory
- My view:
- Non-asymptotic Information Theory.
- Rate-Distortion.
- Network Coding.

Thanks!

