User Browsing Models: Relevance versus Examination

Ramakrishnan Srikant
Sugato Basu
Ni Wang
Daryl Pregibon

Background

Estimating Relevance of Search Engine Results

- Use CTR (click-through rate) data.
- Pr(click) = Pr(examination) x Pr(click | examination)

Relevance

Need user browsing models to estimate Pr(examination)

Notation

- Φ(i) : result at position i
- Examination event: $E_i = \begin{cases} 1, & \text{if the user examined } \phi(i) \\ 0, & \text{otherwise} \end{cases}$
- Click event: $C_i = \begin{cases} 1, & \text{if the user clicked on } \phi(i) \\ 0, & \text{otherwise} \end{cases}$

Examination Hypothesis

Richardson et al, WWW 2007:

$$Pr(C_i = 1) \neq Pr(E_i = 1) Pr(C_i = 1 | E_i = 1)$$

- α_i : position bias
 - Depends solely on position.
 - Can be estimated by looking at CTR of the same result in different positions.

Using Prior Clicks

Examination depends on prior clicks

- Cascade model
- Dependent click model (DCM)
- User browsing model (UBM) [Dupret & Piwowarski, SIGIR 2008]
 - More general and more accurate than Cascade, DCM.
 - Conditions Pr(examination) on closest prior click.
- Bayesian browsing model (BBM) [Liu et al, KDD 2009]
 - Same user behavior model as UBM.
 - Uses Bayesian paradigm for relevance.

User browsing model (UBM)

Use position of closest prior click to predict Pr(examination).

$$Pr(E_i = 1 \mid C_{1:i-1}) = \alpha_i \beta_{i,p(i)}$$
position bias
$$p(i) = position of closest prior click$$

$$Pr(C_i = 1 \mid C_{1:i-1}) = Pr(E_i = 1 \mid C_{1:i-1}) Pr(C_i = 1 \mid E_i = 1)$$

Prior clicks don't affect relevance.

Other Related Work

- Examination depends on prior clicks and prior relevance
 - Click chain model (CCM)
 - General click model (GCM)
- Post-click models
 - Dynamic Bayesian model
 - Session utility model

Constant Relevance Assumption

Constant Relevance Assumption

- Cascade model, DCM, UBM, BBM, CCM, GCM all implicitly assume:
 - Relevance is independent of prior clicks.
 - Relevance is constant across query instances.
 - Query = "Canon S90"
 - Aggregate relevance: Relevance to a query.
 - Query instance = "Canon S90" for a specific user at a specific point in time.
 - Instance relevance: Relevance to a query instance.

User intent

Query string does not fully capture user intent.

Prior clicks signal relevance.

... not just Pr(examination).

Testing Constant Relevance

- If we know that Pr(examination) ≈ 1:
 - Relevance ≈ CTR
 - Test whether relevance is independent of prior clicks.
- When is Pr(examination) ≈ 1?
 - Users scan from top to bottom.
 - If there is a click *below* position i, then Pr(E_i) ≈ 1.

Statistical Power of the Test

For a specific position i:

If relevance is independent of prior clicks, we expect

$$\frac{\text{Clicks}(S_1)}{\text{Predicted clicks}(S_1)} \approx \frac{\text{Clicks}(S_0)}{\text{Predicted clicks}(S_0)}$$

$$\text{Lift} = \text{LHS / RHS} \approx 1$$

The data speaks...

Over all configs:

Lift = 2.69 + - 0.05 (99% conf. Interval)

- •Graph shows config with 3 top ads, 8 rhs ads.
- $T2 = 2^{nd}$ top ad, $R3 = 3^{rd}$ rhs ad, etc.

New User Browsing Models

Pure Relevance

Max Examination

Joint Relevance Examination (JRE)

Pure Relevance

- Any change in Pr(C_i = 1) when conditioned on other clicks is solely due to change in instance relevance.
- Number of clicks on other results used as signal of instance relevance.
 - Does not use position of other clicks, only the count.
- Yields identical aggregate relevance estimates as the baseline model (which does not use co-click information).

$$Pr(C_i = 1 \mid C_{\neq i}, E_i = 1) = r_{\phi(i)} \delta_{n(i)}$$

n(i) = number of click in other positions

Max Examination

- Like UBM/BBM, but also use information about clicks below position i.
 - Pr(examination) ≈ 1 if there is a click below i
- UBM/BBM: Pr(E_i = 1 | C_{1:i-1}) = α_i β_{i,p(i)}
 Max-examination: Pr(E_i = 1 | C_{≠i}) = α_i β_{i,e(i)}

$$e(i) = \begin{cases} p(i), & \text{if no click below position i} \\ i+1, & \text{if there is a click below i} \end{cases}$$

p(i) = positionof closest prior click

Joint Relevance Examination (JRE)

- Combines the features of the pure relevance and maxexamination models.
- Allows CTR changes to be caused by both changes in examination and changes in instance relevance.

$$\begin{split} & \text{Pr}(E_i = 1 \mid C_{\neq i}) = \alpha_i \, \beta_{i,e(i)} \\ & \text{Pr}(C_i = 1 \mid C_{\neq i}, \, E_i = 1) = r_{\phi(i)} \, \delta_{n(i)} \\ & \text{Pr}(C_i = 1 \mid C_{\neq i}) = \text{Pr}(E_i = 1 \mid C_{\neq i}) \, \text{Pr}(C_i = 1 \mid E_i = 1, \, C_{\neq i}) \end{split}$$

Predicting CTR

Predicting CTR

- Models:
 - Baseline: Google's production system for predicting relevance of sponsored results.
 - Does not use co-click information.
 - Compare to UBM/BBM, max examination, pure relevance, and JRE.
- Data:
 - 10% sample of a week of data.
 - 50-50 split between training and testing.

Absolute Error

Baseline: Google's production system.

Log likelihood

Squared Error

Predicting Relevance

Predicting Relevance vs. Predicting CTR

 If model A is more accurate than model B at predicting CTR, wouldn't A also be better at predicting (aggregate) relevance?

Counter-Example

• CTR:

```
pure-relevance
>>
max-examination
>>
baseline
```

Relevance: Either

pure-relevance == baseline
 >>

 max-examination

 OR
 max-examination
 >>

pure-relevance == baseline

Intuition

- Predicting CTR:
 - Get the product, Pr(examination) x Relevance, right.
- Predicting Relevance:
 - Need to correctly assign credit between examination and relevance.
- Incorrectly assigning credit can improve CTR prediction, while making relevance estimates less accurate.

Predicting relevance.

- Run an experiment on live traffic.
 - Sponsored results are ranked by bid x relevance.
 - More accurate relevance estimates should result in higher CTR and revenue.
 - Will place results with higher relevance in positions with higher Pr(examination).
- Baseline/pure-relevance had better revenue and CTR than max-examination.
 - Results were statistically significant results.

Conclusions

- Changes in CTR when conditioned on other clicks are also due to instance relevance, not just examination.
- New user browsing models that incorporate this insight are more accurate.
- Evaluating user browsing models solely using offline analysis of CTR prediction can be problematic.
 - Use human ratings or live experiments.

Future Work

- What about organic search results?
- Quantitatively assigning credit between instance relevance and examination.
 - Features are correlated.
- Generalize pure-relevance and JRE to incorporate information about the relevance of prior results, or the satisfaction of the user with the prior clicked results.

Backup

Scan order

