

IBM Research - China

Temporal Recommendation on Graphs via Long- and Short-term Preference Fusion

Liang Xiang, Quan Yuan, Shiwan Zhao, Li Chen, Xiatian Zhang, Qing Yang, Jimeng Sun

Presenter: Quan Yuan

© Copyright IBM 2010

Problem & Challenges

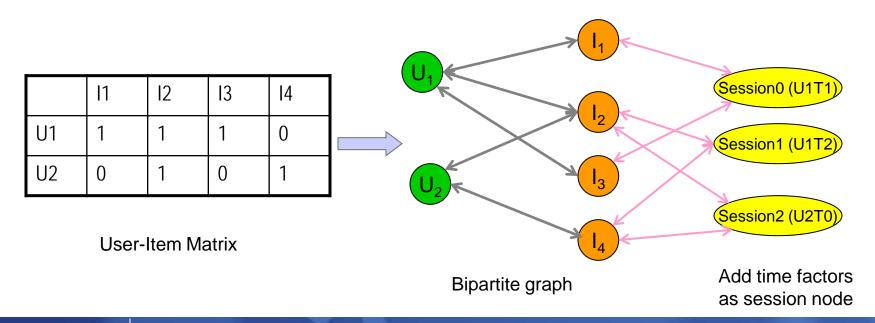
- Temporal dynamics is crucial in recommender system.
 [Koren KDD09], [Liu IUI10], etc
- Temporal recommendation focuses more on local recommendation models for each user
- When modeling individual, one's behavior is usually determined by long-term interests and short-term interests

Challenges

- How to represent and balance users' long-term and shortterm preferences?

Motivation for Session-based Temporal Graph (STG)

- input data < user, item, time>
- User-Item Matrix usually can be represented as a bipartite graph
- When incorporating time factors, we introduced a new type of node "session node"
 - Session: dividing the time slices into bins and binding the bins with corresponding users
- Time dimension is a *local* effect of user, treat time as a universal dimension shared by all users is not very effective, e.g. tri-partite graph or tensor



IBM

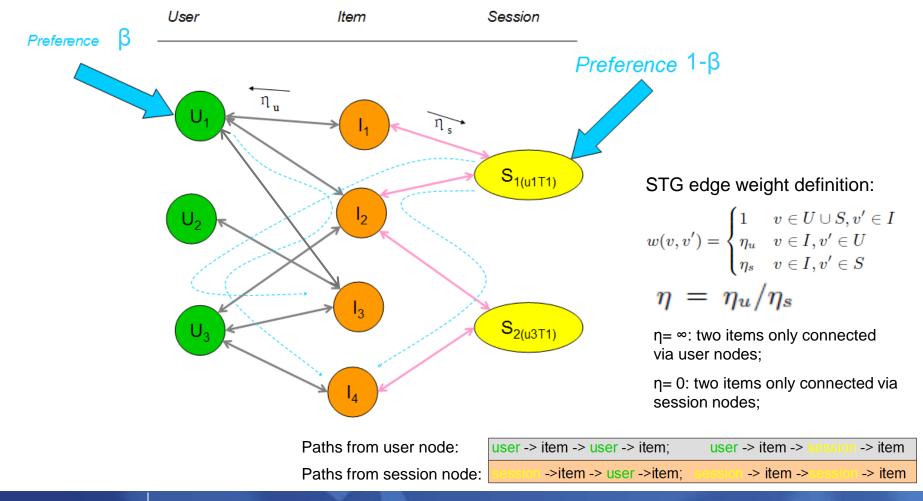
Injected Preference Fusion (IPF on STG)

- An algorithm based on STG, which balancing the impact of long-term and short-term preferences when making recommendation
- Basic Idea:
 - Injected Preferences into both user node (β) and session node (1 - β)
 - Then in propagation process, the preferences were propagated to an unknown item node
 - Finally, the nodes which get most preferences will be recommended to current user

Injected Preference Fusion on STG

Making recommendation for U1 at time T1:

Session Temporal Graph (STG)



Experiments

Data sets	User bookmark a paper at some time User bookmark a web page at some time							
- CiteULike		User	4,607	-Delicious	User	8,861		
		Item	16,054		Item	3,257		
		User-item pair	109,346		User-item pair	59,694		
		sparsity	99.85%		sparsity	99.79%		

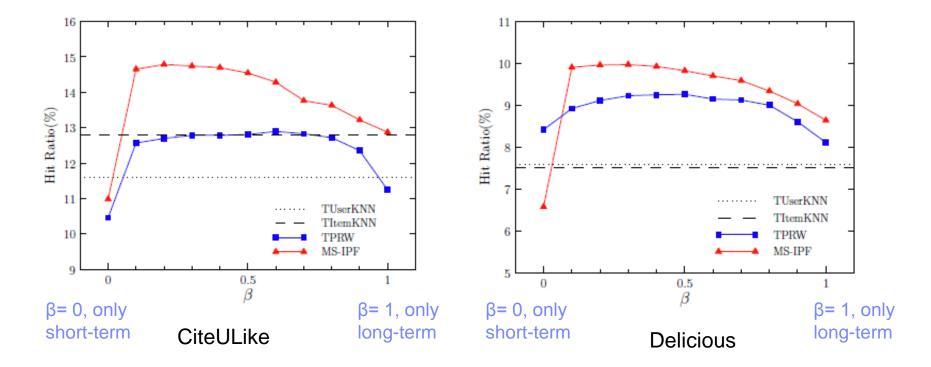
Hit Ratio =
$$\frac{\sum_{u} I(T_u \in R(u, t))}{|U|}$$

- Evaluation Metric
 - Hit Ratio: Put the latest item of each user into test set, then generate a list of N (N=10) items for everyone at time t. If the test item appears in the recommendation list, we call it a hit
- Compared Algorithms
 - Temporal User KNN
 - Temporal Item KNN
 - Temporal Personalized Random Walk

IBM

IBM Research - China

β's impact – Balance the Injected Preferences on User and Session node

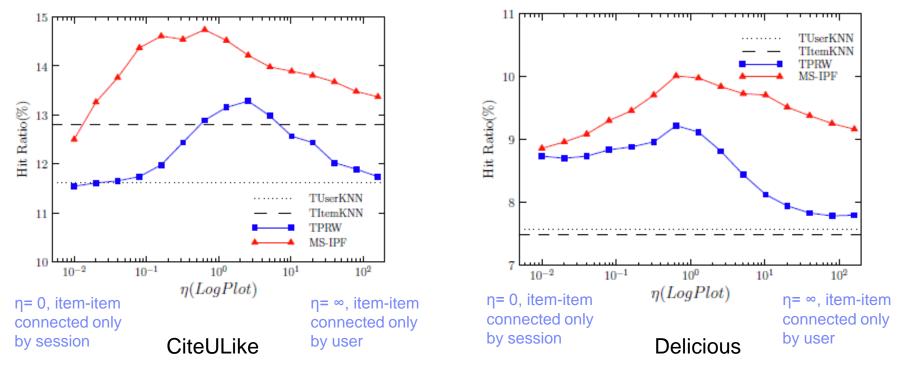


- Optimal results were get when βbelongs to [0.1,0.6];
- Proves the impacts of both long-term and short-term preferences in making good recommendation

IBM Research - China

η's impact -- Control the ratio of preferences (from an item node) flow to user node against to session node

 $\eta = \eta_u / \eta_s$



- Proves the effectiveness of balancing long-term and short-term preferences in propagation process
- Since X-axis is the logarithm value, it means the optimal hit ratio can be get for a wide range of η

Session size's impact on Hit Ratio of IPF

time window (days)	CiteULike	Delicious
1	13.85%	9.83%
2	13.70%	9.72%
3	13.70%	9.72%
4	13.76%	9.72%
5	13.81%	9.74%
6	13.87%	9.68%
7	13.85%	9.69%
15	13.76%	9.59%
30	13.81%	9.48%
45	13.35%	9.24%
60	13.24%	9.20%
90	13.19%	8.83%

- The result is not very sensitive to the size of time window
 - On CiteULike, the optimal time window is about one week
 - On Delicious, the optimal time window is about one day
- Users' interests on research topics (CiteULike) drift more slowly than interests on browsing web pages (Delicious), proves with our real life experience.

Overall Accuracy Comparison

Method	Hit Ratio	Improvement	Method	Hit Ratio	Improvement
TItemKNN	12.85%	_	TItemKNN	7.49%	_
TUserKNN	11.63%	-9.49%	TUserKNN	7.58%	1.2%
TPRW	13.46%	4.75%	TPRW	9.39%	25.37%
MS-IPF	14.78%	15.02%	MS-IPF	10.07%	34.45%

CiteULike

Delicious

- User Temporal Item KNN as baseline,
 - On CiteULike, MS-IPF improves TItemKNN up to 15.02%;
 - On Delicious, MS-IPF improves TItemKNN up to 34.45%

Conclusion

- Propose a Session-based Temporal Graph (STG) to incorporate temporal information on the graph
- Based on STG, we propose Injected Preference Fusion (IPF) to balance the impact of users' long-term and short-term preferences.
- Compare with other approaches on two real datasets, which confirm that STG's effectiveness for incorporating temporal data, and IPF is effective to balance users' long-term and short-term preferences.