

# Generative Models for Ticket Resolution in Expert Networks

#### Gengxin Miao, Louise Moser, Xifeng Yan University of California, Santa Barbara

Yi Chen

Shu Tao IBM T.J. Watson

IBM T.J. Watson Arizona State University

Nikos Anerousis IBM T.J. Watson



# The Life of a Ticket





# **Application Scenarios**





# Problem Definition





#### Outline





# Resolution Model (RM)

**Routing Algorithms** 

Each expert has an expertise profile

**Generative Models** 

An expert is likely to be able to resolve tickets similar to what he/she has resolved previously



Tickets resolved by expert E

$$P_{g_i} = [P(w_1|g_i), P(w_2|g_i), ..., P(w_n|g_i)]^T$$

**Experiment** 



# Transfer Model (TM)

**Routing Algorithms** 



**Generative Models** 

An expert transfers similar tickets to another expert



Tickets transferred from expert B to expert F

$$P_{e_{ij}} = [P(w_1|e_{ij}), P(w_2|e_{ij}), ..., P(w_n|e_{ij})]^T$$

**Experiment** 

**Routing Algorithms** 

**Generative Models** 



# **Optimized Network Model (ONM)**

**Experiment** 

Transfer profiles optimized for the entire expert network

$$\mathcal{L} = \prod_{t \in T} P(R(t)|t)$$

$$P(R(t)|t) = P(g_1|t)P(g_2|t, g_1)P(g_3|t, g_2)P(g_3|t, g_3)$$

$$P(g_j|t, g_i) = \frac{P(t|e_{ij})P(g_j|g_i)}{Z(t, g_i)}$$

$$= \frac{(\prod_{w_k \in t} P(w_k|e_{ij})^{f(w_k, t)})P(g_j|g_i)}{Z(t, g_i)}$$

$$Z(t, g_i) = \sum_{g_j \in \mathcal{G}} P(t|e_{ij})P(g_j|g_i)$$



## **Optimized Network Model (ONM)**

**Generative Models Routing Algorithms** Experiment  $\log \mathcal{L} \geq \lfloor \log \mathcal{L} \rfloor = \sum \sum (\log(P(t|e_{ij})) + \log(P(g_j|g_i)))$  $e_{ij} t \in T_{ij}$  $-\sum \sum \sum \log(\sum (P(g_{\ell}|g_i) \times P(w_k|e_{i\ell})))$  $g_i \in \mathcal{G} \ t' \in \mathcal{T}_i \ w_k \in t' \qquad g_\ell \in \mathcal{G}$  $\nabla \lfloor \log(\mathcal{L}) \rfloor = \frac{\partial \lfloor \log \mathcal{L} \rfloor}{\partial P(w_k | e_{ij})}$ TM model as initial values Use steepest descent method  $= \frac{\sum_{t \in \mathcal{T}_{ij}} n(w_k, t)}{P(w_k | e_{ij})}$ until convergence  $P(g_j|g_i) \times \sum_{t' \in T_i} n(w_k, t')$  $\overline{\sum_{g_{\ell} \in \mathcal{G}} P(g_{\ell}|g_i) \times P(w_k|e_{i\ell})}$ 



# Routing Algorithms

- Ranked resolver
- □ Greedy transfer
- Holistic routing



# Ranked Resolver



$$P(g_i|t) = \frac{P(g_i)P(t|g_i)}{P(t)} \propto P(g_i) \prod_{w_k \in t} P(w_k|g_i)^{f(w_k,t)}$$



## Greedy Transfer

Generative Models

**Routing Algorithms** 

Experiment

Match the ticket with the transfer profiles





#### Holistic Routing

Generative Models

**Routing Algorithms** 

Experiment

#### All possibilities are explored





# **Experimental Results**

**Generative Models Routing Algorithms** Experiment AIX ticket data 18,426 tickets 16,065 words 847 expert groups Evaluation 75% training data 25% testing data

Data items are divided randomly



## **Experimental Results**





# Conclusion

- We presented generative models to characterize the ticket resolution process
  - Historical routing sequence and ticket content are integrated together into generative models
  - Both expertise profiles and transfer profiles are captured
  - Model parameters are optimized either locally or globally
- We investigated ticket routing algorithms
   Experiments show that the algorithms are efficient
- Other applications of the generative models
  - Expertise awareness assessment
  - Network organizational structure investigation

# Thanks! Questions?