
Large-scale Data Mining:
MapReduce and beyond

Part 1: Basics

Spiros Papadimitriou, Google
Jimeng Sun, IBM Research

Rong Yan, Facebook

Monday, August 23, 2010

2

Data everywhere

Monday, August 23, 2010

2

Data everywhere

 Flickr (3 billion photos)
 YouTube (83M videos, 15 hrs/min)
 Web (10B videos watched / mo.)
 Digital photos (500 billion / year)
 All broadcast (70,000TB / year)
 Yahoo! Webmap (3 trillion links,

300TB compressed, 5PB disk)
 Human genome (2-30TB uncomp.)

Monday, August 23, 2010

2

Data everywhere

 Flickr (3 billion photos)
 YouTube (83M videos, 15 hrs/min)
 Web (10B videos watched / mo.)
 Digital photos (500 billion / year)
 All broadcast (70,000TB / year)
 Yahoo! Webmap (3 trillion links,

300TB compressed, 5PB disk)
 Human genome (2-30TB uncomp.)

So what ??
Monday, August 23, 2010

2

Data everywhere

 Flickr (3 billion photos)
 YouTube (83M videos, 15 hrs/min)
 Web (10B videos watched / mo.)
 Digital photos (500 billion / year)
 All broadcast (70,000TB / year)
 Yahoo! Webmap (3 trillion links,

300TB compressed, 5PB disk)
 Human genome (2-30TB uncomp.)

So what ??

more is:

Monday, August 23, 2010

2

Data everywhere

 Flickr (3 billion photos)
 YouTube (83M videos, 15 hrs/min)
 Web (10B videos watched / mo.)
 Digital photos (500 billion / year)
 All broadcast (70,000TB / year)
 Yahoo! Webmap (3 trillion links,

300TB compressed, 5PB disk)
 Human genome (2-30TB uncomp.)

So what ??

more is:
more …

Monday, August 23, 2010

2

Data everywhere

 Flickr (3 billion photos)
 YouTube (83M videos, 15 hrs/min)
 Web (10B videos watched / mo.)
 Digital photos (500 billion / year)
 All broadcast (70,000TB / year)
 Yahoo! Webmap (3 trillion links,

300TB compressed, 5PB disk)
 Human genome (2-30TB uncomp.)

So what ??

more is:
different!

more is:
more …

Monday, August 23, 2010

3

Data everywhere
 Opportunities

Real-time access to content
Richer context from users and hyperlinks
Abundant training examples
“Brute-force” methods may suffice

 Challenges
“Dirtier” data
Efficient algorithms
Scalability (with reasonable cost)

Monday, August 23, 2010

3

Data everywhere
 Opportunities

Real-time access to content
Richer context from users and hyperlinks
Abundant training examples
“Brute-force” methods may suffice

 Challenges
“Dirtier” data
Efficient algorithms
Scalability (with reasonable cost)

Monday, August 23, 2010

3

Data everywhere
 Opportunities

Real-time access to content
Richer context from users and hyperlinks
Abundant training examples
“Brute-force” methods may suffice

 Challenges
“Dirtier” data
Efficient algorithms
Scalability (with reasonable cost)

Monday, August 23, 2010

4

“The Google Way”

Chris Anderson, Wired (July 2008)
Monday, August 23, 2010

4

“The Google Way”
“All models are wrong, but some are useful”

– George Box

Chris Anderson, Wired (July 2008)
Monday, August 23, 2010

4

“The Google Way”
“All models are wrong, but some are useful”

– George Box
“All models are wrong, and increasingly you
can succeed without them.” – Peter Norvig

 Google PageRank
 Shotgun gene sequencing

Chris Anderson, Wired (July 2008)
Monday, August 23, 2010

4

“The Google Way”
“All models are wrong, but some are useful”

– George Box
“All models are wrong, and increasingly you
can succeed without them.” – Peter Norvig

 Google PageRank
 Shotgun gene sequencing
 Language translation

Chris Anderson, Wired (July 2008)
Monday, August 23, 2010

4

“The Google Way”
“All models are wrong, but some are useful”

– George Box
“All models are wrong, and increasingly you
can succeed without them.” – Peter Norvig

 Google PageRank
 Shotgun gene sequencing
 Language translation
 …

Chris Anderson, Wired (July 2008)
Monday, August 23, 2010

5

Getting over the marketing hype…

Cloud Computing
=

Monday, August 23, 2010

5

Getting over the marketing hype…

Cloud Computing
=

Internet

Monday, August 23, 2010

5

Getting over the marketing hype…

Cloud Computing
=

Internet
+

Commoditization/
standardization

Monday, August 23, 2010

5

Getting over the marketing hype…

Cloud Computing
=

Internet
+

Commoditization/
standardization ‘It’s what I and many others have worked towards our entire

careers. It’s just happening now.’

 – Eric Schmidt

Monday, August 23, 2010

6

This tutorial
 Is not about cloud computing
 But about large scale data processing

Monday, August 23, 2010

6

This tutorial
 Is not about cloud computing
 But about large scale data processing

Data + Algorithms

Monday, August 23, 2010

7

Tutorial overview
 Part 1 (Spiros): Basic concepts & tools

 MapReduce & distributed storage
 Hadoop / HBase / Pig / Cascading / Hive

 Part 2 (Jimeng): Algorithms
 Information retrieval
 Graph algorithms
 Clustering (k-means)
 Classification (k-NN, naïve Bayes)

 Part 3 (Rong): Applications
 Text processing
 Data warehousing
 Machine learning

Monday, August 23, 2010

8

Outline
 Introduction
 MapReduce & distributed storage
 Hadoop

HBase
Pig
Cascading
Hive

 Summary

Monday, August 23, 2010

9

What is MapReduce?

 Programming model?

 Execution environment?

 Software package?

Monday, August 23, 2010

9

What is MapReduce?

 Programming model?

 Execution environment?

 Software package?

It’s all of those things, depending who you ask…
Monday, August 23, 2010

9

What is MapReduce?

 Programming model?

 Execution environment?

 Software package?

It’s all of those things, depending who you ask…

“MapReduce” (this talk)
==

Distributed computation +
distributed storage +

scheduling / fault tolerance

Monday, August 23, 2010

10

Example – Programming model

LAST FIRST SALARY
Smith John $90,000
Brown David $70,000
Johnson George $95,000
Yates John $80,000
Miller Bill $65,000
Moore Jack $85,000
Taylor Fred $75,000
Smith David $80,000
Harris John $90,000
...
...

employees.txt

Q: “What is the frequency
of each first name?”

Monday, August 23, 2010

10

Example – Programming model

LAST FIRST SALARY
Smith John $90,000
Brown David $70,000
Johnson George $95,000
Yates John $80,000
Miller Bill $65,000
Moore Jack $85,000
Taylor Fred $75,000
Smith David $80,000
Harris John $90,000
...
...

employees.txt

Q: “What is the frequency
of each first name?”

def getName (line):

Monday, August 23, 2010

10

Example – Programming model

LAST FIRST SALARY
Smith John $90,000
Brown David $70,000
Johnson George $95,000
Yates John $80,000
Miller Bill $65,000
Moore Jack $85,000
Taylor Fred $75,000
Smith David $80,000
Harris John $90,000
...
...

employees.txt

Q: “What is the frequency
of each first name?”

mapper
def getName (line):
 return line.split(‘\t’)[1]

def addCounts (hist, name):

Monday, August 23, 2010

10

Example – Programming model

LAST FIRST SALARY
Smith John $90,000
Brown David $70,000
Johnson George $95,000
Yates John $80,000
Miller Bill $65,000
Moore Jack $85,000
Taylor Fred $75,000
Smith David $80,000
Harris John $90,000
...
...

employees.txt

Q: “What is the frequency
of each first name?”

mapper
def getName (line):
 return line.split(‘\t’)[1]

def addCounts (hist, name):
 hist[name] = \
 hist.get(name,default=0) + 1
 return hist

input = open(‘employees.txt’, ‘r’)

Monday, August 23, 2010

10

Example – Programming model

LAST FIRST SALARY
Smith John $90,000
Brown David $70,000
Johnson George $95,000
Yates John $80,000
Miller Bill $65,000
Moore Jack $85,000
Taylor Fred $75,000
Smith David $80,000
Harris John $90,000
...
...

employees.txt

Q: “What is the frequency
of each first name?”

mapper
def getName (line):
 return line.split(‘\t’)[1]

def addCounts (hist, name):
 hist[name] = \
 hist.get(name,default=0) + 1
 return hist

input = open(‘employees.txt’, ‘r’)

Monday, August 23, 2010

10

Example – Programming model

LAST FIRST SALARY
Smith John $90,000
Brown David $70,000
Johnson George $95,000
Yates John $80,000
Miller Bill $65,000
Moore Jack $85,000
Taylor Fred $75,000
Smith David $80,000
Harris John $90,000
...
...

employees.txt

Q: “What is the frequency
of each first name?”

mapper
def getName (line):
 return line.split(‘\t’)[1]

def addCounts (hist, name):
 hist[name] = \
 hist.get(name,default=0) + 1
 return hist

input = open(‘employees.txt’, ‘r’)

intermediate = map(getName, input)

Monday, August 23, 2010

10

Example – Programming model

LAST FIRST SALARY
Smith John $90,000
Brown David $70,000
Johnson George $95,000
Yates John $80,000
Miller Bill $65,000
Moore Jack $85,000
Taylor Fred $75,000
Smith David $80,000
Harris John $90,000
...
...

employees.txt

Q: “What is the frequency
of each first name?”

mapper
def getName (line):
 return line.split(‘\t’)[1]

def addCounts (hist, name):
 hist[name] = \
 hist.get(name,default=0) + 1
 return hist

input = open(‘employees.txt’, ‘r’)

intermediate = map(getName, input)

Monday, August 23, 2010

10

Example – Programming model

LAST FIRST SALARY
Smith John $90,000
Brown David $70,000
Johnson George $95,000
Yates John $80,000
Miller Bill $65,000
Moore Jack $85,000
Taylor Fred $75,000
Smith David $80,000
Harris John $90,000
...
...

employees.txt

Q: “What is the frequency
of each first name?”

mapper

reducer

def getName (line):
 return line.split(‘\t’)[1]

def addCounts (hist, name):
 hist[name] = \
 hist.get(name,default=0) + 1
 return hist

input = open(‘employees.txt’, ‘r’)

intermediate = map(getName, input)

result = reduce(addCounts, \

intermediate, {})

Monday, August 23, 2010

11

def getName (line):
 return (line.split(‘\t’)[1], 1)

def addCounts (hist, (name, c)):
 hist[name] = \
 hist.get(name,default=0) + c
 return hist

input = open(‘employees.txt’, ‘r’)

intermediate = map(getName, input)

result = reduce(addCounts, \

intermediate, {})

Example – Programming model

LAST FIRST SALARY
Smith John $90,000
Brown David $70,000
Johnson George $95,000
Yates John $80,000
Miller Bill $65,000
Moore Jack $85,000
Taylor Fred $75,000
Smith David $80,000
Harris John $90,000
...
...

employees.txt

Q: “What is the frequency
of each first name?”

mapper

reducer

Monday, August 23, 2010

11

def getName (line):
 return (line.split(‘\t’)[1], 1)

def addCounts (hist, (name, c)):
 hist[name] = \
 hist.get(name,default=0) + c
 return hist

input = open(‘employees.txt’, ‘r’)

intermediate = map(getName, input)

result = reduce(addCounts, \

intermediate, {})

Example – Programming model

LAST FIRST SALARY
Smith John $90,000
Brown David $70,000
Johnson George $95,000
Yates John $80,000
Miller Bill $65,000
Moore Jack $85,000
Taylor Fred $75,000
Smith David $80,000
Harris John $90,000
...
...

employees.txt

Q: “What is the frequency
of each first name?”

mapper

reducer

Key-value iterators

Monday, August 23, 2010

12

public class HistogramJob extends Configured implements Tool {

 public static class FieldMapper extends MapReduceBase
 implements Mapper<LongWritable,Text,Text,LongWritable> {

 private static LongWritable ONE = new LongWritable(1);
 private static Text firstname = new Text();

 @Override
 public void map (LongWritable key, Text value,
 OutputCollector<Text,LongWritable> out, Reporter r) {
 firstname.set(value.toString().split(“\t”)[1]);
 output.collect(firstname, ONE);
 }
 } // class FieldMapper

Example – Programming model
Hadoop / Java

Monday, August 23, 2010

12

public class HistogramJob extends Configured implements Tool {

 public static class FieldMapper extends MapReduceBase
 implements Mapper<LongWritable,Text,Text,LongWritable> {

 private static LongWritable ONE = new LongWritable(1);
 private static Text firstname = new Text();

 @Override
 public void map (LongWritable key, Text value,
 OutputCollector<Text,LongWritable> out, Reporter r) {
 firstname.set(value.toString().split(“\t”)[1]);
 output.collect(firstname, ONE);
 }
 } // class FieldMapper

Example – Programming model
Hadoop / Java

non-boilerplate

Monday, August 23, 2010

12

public class HistogramJob extends Configured implements Tool {

 public static class FieldMapper extends MapReduceBase
 implements Mapper<LongWritable,Text,Text,LongWritable> {

 private static LongWritable ONE = new LongWritable(1);
 private static Text firstname = new Text();

 @Override
 public void map (LongWritable key, Text value,
 OutputCollector<Text,LongWritable> out, Reporter r) {
 firstname.set(value.toString().split(“\t”)[1]);
 output.collect(firstname, ONE);
 }
 } // class FieldMapper

Example – Programming model
Hadoop / Java

non-boilerplate

typed…

Monday, August 23, 2010

13

Example – Programming model
Hadoop / Java

 public static class LongSumReducer extends MapReduceBase
 implements Mapper<LongWritable,Text,Text,LongWritable> {

 private static LongWritable sum = new LongWritable();

 @Override
 public void reduce (Text key, Iterator<LongWritable> vals,
 OutputCollector<Text,LongWritable> out, Reporter r) {
 long s = 0;
 while (vals.hasNext())
 s += vals.next().get();
 sum.set(s);
 output.collect(key, sum);
 }
 } // class LongSumReducer

Monday, August 23, 2010

13

Example – Programming model
Hadoop / Java

 public static class LongSumReducer extends MapReduceBase
 implements Mapper<LongWritable,Text,Text,LongWritable> {

 private static LongWritable sum = new LongWritable();

 @Override
 public void reduce (Text key, Iterator<LongWritable> vals,
 OutputCollector<Text,LongWritable> out, Reporter r) {
 long s = 0;
 while (vals.hasNext())
 s += vals.next().get();
 sum.set(s);
 output.collect(key, sum);
 }
 } // class LongSumReducer

Monday, August 23, 2010

14

Example – Programming model
Hadoop / Java

 public int run (String[] args) throws Exception {
 JobConf job = new JobConf(getConf(), HistogramJob.class);
 job.setJobName(“Histogram”);
 FileInputFormat.setInputPaths(job, args[0]);
 job.setMapperClass(FieldMapper.class);
 job.setCombinerClass(LongSumReducer.class);
 job.setReducerClass(LongSumReducer.class);
 // ...
 JobClient.runJob(job);
 return 0;
 } // run()

 public static main (String[] args) throws Exception {
 ToolRunner.run(new Configuration(), new HistogramJob(), args);
 } // main()
} // class HistogramJob

Monday, August 23, 2010

14

Example – Programming model
Hadoop / Java

 public int run (String[] args) throws Exception {
 JobConf job = new JobConf(getConf(), HistogramJob.class);
 job.setJobName(“Histogram”);
 FileInputFormat.setInputPaths(job, args[0]);
 job.setMapperClass(FieldMapper.class);
 job.setCombinerClass(LongSumReducer.class);
 job.setReducerClass(LongSumReducer.class);
 // ...
 JobClient.runJob(job);
 return 0;
 } // run()

 public static main (String[] args) throws Exception {
 ToolRunner.run(new Configuration(), new HistogramJob(), args);
 } // main()
} // class HistogramJob

~ 30 lines = 25 boilerplate (Eclipse) + 5 actual code
Monday, August 23, 2010

15

MapReduce for…
 Distributed clusters

 Google’s original
 Hadoop (Apache Software Foundation)

 Hardware
 SMP/CMP: Phoenix (Stanford)
 Cell BE

 Other
 Skynet (in Ruby/DRB)
 QtConcurrent
 BashReduce
 …many more

Monday, August 23, 2010

15

MapReduce for…
 Distributed clusters

 Google’s original
 Hadoop (Apache Software Foundation)

 Hardware
 SMP/CMP: Phoenix (Stanford)
 Cell BE

 Other
 Skynet (in Ruby/DRB)
 QtConcurrent
 BashReduce
 …many more

Monday, August 23, 2010

16

Recap

Quick-n-dirty script Hadoop

~5 lines of (non-boilerplate) code~5 lines of (non-boilerplate) code

Single machine,
local drive

Up to thousands of
machines and drives

vs

Monday, August 23, 2010

16

Recap

What is hidden to achieve this:
 Data partitioning, placement and replication
 Computation placement (and replication)
 Number of nodes (mappers / reducers)
 …

Quick-n-dirty script Hadoop

~5 lines of (non-boilerplate) code~5 lines of (non-boilerplate) code

Single machine,
local drive

Up to thousands of
machines and drives

vs

Monday, August 23, 2010

16

Recap

What is hidden to achieve this:
 Data partitioning, placement and replication
 Computation placement (and replication)
 Number of nodes (mappers / reducers)
 …

Quick-n-dirty script Hadoop

~5 lines of (non-boilerplate) code~5 lines of (non-boilerplate) code

Single machine,
local drive

Up to thousands of
machines and drives

vs

As a programmer, you don’t need to know
what I’m about to show you next…

Monday, August 23, 2010

17

Execution model: Flow

SPLIT 0

SPLIT 1

SPLIT 2

SPLIT 3

MAPPER

REDUCER
MAPPER

MAPPER
REDUCER

PART 0

PART 1

MAPPER

Input file

Output file

Monday, August 23, 2010

17

Execution model: Flow

SPLIT 0

SPLIT 1

SPLIT 2

SPLIT 3

MAPPER

REDUCER
MAPPER

MAPPER
REDUCER

PART 0

PART 1

MAPPER

Key/value
iterators

Input file

Output file

Monday, August 23, 2010

17

Execution model: Flow

SPLIT 0

SPLIT 1

SPLIT 2

SPLIT 3

MAPPER

REDUCER
MAPPER

MAPPER
REDUCER

PART 0

PART 1

MAPPER

Sequential scan

Key/value
iterators

Input file

Output file

Monday, August 23, 2010

17

Execution model: Flow

SPLIT 0

SPLIT 1

SPLIT 2

SPLIT 3

MAPPER

REDUCER
MAPPER

MAPPER
REDUCER

PART 0

PART 1

MAPPER

Sequential scan

Key/value
iteratorsSmith John $90,000

Yates John $80,000

Input file

Output file

Monday, August 23, 2010

17

Execution model: Flow

SPLIT 0

SPLIT 1

SPLIT 2

SPLIT 3

MAPPER

REDUCER
MAPPER

MAPPER
REDUCER

PART 0

PART 1

MAPPER

Sequential scan

Key/value
iterators

John 1

John 1

Input file

Output file

Monday, August 23, 2010

17

Execution model: Flow

SPLIT 0

SPLIT 1

SPLIT 2

SPLIT 3

MAPPER

REDUCER
MAPPER

MAPPER
REDUCER

PART 0

PART 1

MAPPER

Sequential scan

Key/value
iterators

All-to-all, hash partitioning

John 1

John 1

Input file

Output file

Monday, August 23, 2010

17

Execution model: Flow

SPLIT 0

SPLIT 1

SPLIT 2

SPLIT 3

MAPPER

REDUCER
MAPPER

MAPPER
REDUCER

PART 0

PART 1

MAPPER

Sequential scan

Key/value
iterators

All-to-all, hash partitioning

Sort-merge

John 2

Input file

Output file

Monday, August 23, 2010

17

Execution model: Flow

SPLIT 0

SPLIT 1

SPLIT 2

SPLIT 3

MAPPER

REDUCER
MAPPER

MAPPER
REDUCER

PART 0

PART 1

MAPPER

Sequential scan

Key/value
iterators

All-to-all, hash partitioning

Sort-merge

John 2

Input file

Output file

Monday, August 23, 2010

18

Execution model: Placement

HOST 0

SPLIT 0
Replica 1/3

SPLIT 1
Replica 2/3

SPLIT 3
Replica 2/3

HOST 1

SPLIT 0
Replica 2/3

SPLIT 4
Replica 1/3

SPLIT 3
Replica 1/3

HOST 2

SPLIT 3
Replica 3/3

SPLIT 2
Replica 2/3

SPLIT 0
Replica 3/3

HOST 3

SPLIT 2
Replica 3/3

SPLIT 1
Replica 1/3

SPLIT 4
Replica 2/3

HOST 4

HOST 5

HOST 6

Monday, August 23, 2010

18

Execution model: Placement

HOST 0

SPLIT 0
Replica 1/3

MAPPER

SPLIT 1
Replica 2/3

SPLIT 3
Replica 2/3

HOST 1

SPLIT 0
Replica 2/3

SPLIT 4
Replica 1/3

SPLIT 3
Replica 1/3

HOST 2

SPLIT 3
Replica 3/3

MAPPER

SPLIT 2
Replica 2/3

SPLIT 0
Replica 3/3

HOST 3

SPLIT 2
Replica 3/3

MAPPER

SPLIT 1
Replica 1/3

SPLIT 4
Replica 2/3

MAPPER

HOST 4

HOST 5

HOST 6

Computation co-located with data (as much as possible)
Monday, August 23, 2010

19

Execution model: Placement

HOST 0

SPLIT 0
Replica 1/3

MAPPER

SPLIT 1
Replica 2/3

SPLIT 3
Replica 2/3

HOST 1

SPLIT 0
Replica 2/3

SPLIT 4
Replica 1/3

SPLIT 3
Replica 1/3

HOST 2

SPLIT 3
Replica 3/3

MAPPER

SPLIT 2
Replica 2/3

SPLIT 0
Replica 3/3

HOST 3

SPLIT 2
Replica 3/3

MAPPER

SPLIT 1
Replica 1/3

SPLIT 4
Replica 2/3

MAPPER

HOST 4

HOST 5

HOST 6

Monday, August 23, 2010

19

Execution model: Placement

HOST 0

SPLIT 0
Replica 1/3

MAPPER

SPLIT 1
Replica 2/3

SPLIT 3
Replica 2/3

HOST 1

SPLIT 0
Replica 2/3

SPLIT 4
Replica 1/3

SPLIT 3
Replica 1/3

HOST 2

SPLIT 3
Replica 3/3

MAPPER

SPLIT 2
Replica 2/3

SPLIT 0
Replica 3/3

HOST 3

SPLIT 2
Replica 3/3

MAPPER

SPLIT 1
Replica 1/3

SPLIT 4
Replica 2/3

MAPPER

HOST 4

HOST 5

HOST 6

REDUCER

Monday, August 23, 2010

19

Execution model: Placement

HOST 0

SPLIT 0
Replica 1/3

MAPPER

SPLIT 1
Replica 2/3

SPLIT 3
Replica 2/3

HOST 1

SPLIT 0
Replica 2/3

SPLIT 4
Replica 1/3

SPLIT 3
Replica 1/3

HOST 2

SPLIT 3
Replica 3/3

MAPPER

SPLIT 2
Replica 2/3

SPLIT 0
Replica 3/3

HOST 3

SPLIT 2
Replica 3/3

MAPPER

SPLIT 1
Replica 1/3

SPLIT 4
Replica 2/3

MAPPER

HOST 4

HOST 5

HOST 6

REDUCER

Rack/network-aware
Monday, August 23, 2010

19

Execution model: Placement

HOST 0

SPLIT 0
Replica 1/3

MAPPER

SPLIT 1
Replica 2/3

SPLIT 3
Replica 2/3

HOST 1

SPLIT 0
Replica 2/3

SPLIT 4
Replica 1/3

SPLIT 3
Replica 1/3

HOST 2

SPLIT 3
Replica 3/3

MAPPER

SPLIT 2
Replica 2/3

SPLIT 0
Replica 3/3

HOST 3

SPLIT 2
Replica 3/3

MAPPER

SPLIT 1
Replica 1/3

SPLIT 4
Replica 2/3

MAPPER

HOST 4

HOST 5

HOST 6

REDUCER

Rack/network-aware

C

C

C

C

C COMBINER

Monday, August 23, 2010

20

MapReduce Summary

Monday, August 23, 2010

20

MapReduce Summary

 Simple programming model
 Scalable, fault-tolerant
 Ideal for (pre-)processing large volumes of

data

Monday, August 23, 2010

20

MapReduce Summary

 Simple programming model
 Scalable, fault-tolerant
 Ideal for (pre-)processing large volumes of

data‘However, if the data center is the computer, it leads to the even
more intriguing question “What is the equivalent of the ADD
instruction for a data center?” […] If MapReduce is the first
instruction of the “data center computer”, I can’t wait to
see the rest of the instruction set, as well as the data center
programming language, the data center operating system, the
data center storage systems, and more.’

 – David Patterson, “The Data Center Is The Computer”,
CACM, Jan. 2008

Monday, August 23, 2010

21

Outline
 Introduction
 MapReduce & distributed storage
 Hadoop

HBase
Pig
Cascading
Hive

 Summary

Monday, August 23, 2010

22

Hadoop

HBase

MapReduce

Core Avro

HDFS Zoo
Keeper

HivePig Chukwa

Monday, August 23, 2010

22

Hadoop

HBase

MapReduce

Core Avro

HDFS Zoo
Keeper

HivePig Chukwa

Hadoop’s stated mission (Doug Cutting interview):

Commoditize infrastructure for web-scale,
data-intensive applications

Monday, August 23, 2010

23

Who uses Hadoop?
 Yahoo!
 Facebook
 Last.fm
 Rackspace
 Digg

 Apache Nutch

 … more in part 3

Monday, August 23, 2010

24

MapReduce

Avro

HDFS

Hadoop

HBase

Core

Zoo
Keeper

HivePig Chukwa

Monday, August 23, 2010

24

MapReduce

Avro

HDFS

Hadoop

HBase

Core

Zoo
Keeper

HivePig Chukwa

Filesystems and I/O:
 Abstraction APIs
 RPC / Persistence

Monday, August 23, 2010

25

Core

Zoo
KeeperMapReduce HDFS

Hadoop

HBase HivePig Chukwa

Avro

Monday, August 23, 2010

25

Core

Zoo
KeeperMapReduce HDFS

Hadoop

HBase HivePig Chukwa

Cross-language serialization:
 RPC / persistence
 ~ Google ProtoBuf / FB Thrift

Avro

Monday, August 23, 2010

26

HBase HivePig

Core

Zoo
KeeperHDFS

Hadoop

Chukwa

Avro

MapReduce

Monday, August 23, 2010

26

HBase HivePig

Core

Zoo
KeeperHDFS

Hadoop

Chukwa
Distributed execution (batch)
 Programming model
 Scalability / fault-tolerance

Avro

MapReduce

Monday, August 23, 2010

27

MapReduce

Chukwa

Avro

HBase HivePig

Core

Zoo
Keeper

Hadoop

HDFS

Monday, August 23, 2010

27

MapReduce

Chukwa

Avro

HBase HivePig

Core

Zoo
Keeper

Hadoop

Distributed storage (read-opt.)
 Replication / scalability
 ~ Google filesystem (GFS)

HDFS

Monday, August 23, 2010

28

HDFS

Chukwa

Avro

HBase HivePig

Core

Zoo
Keeper

Hadoop

MapReduce

Monday, August 23, 2010

28

HDFS

Chukwa

Avro

HBase HivePig

Core

Zoo
Keeper

Hadoop

Coordination service
 Locking / configuration
 ~ Google Chubby

MapReduce

Monday, August 23, 2010

29

Avro

MapReduce

HivePigHBase

Core

Zoo
KeeperHDFS

Hadoop

Chukwa

Monday, August 23, 2010

29

Avro

MapReduce

HivePigHBase

Core

Zoo
KeeperHDFS

Hadoop

Chukwa

Column-oriented, sparse store
 Batch & random access
 ~ Google BigTable

Monday, August 23, 2010

30

MapReduce HDFS

HiveHBase

Avro

Pig

Core

Zoo
Keeper

Hadoop

Chukwa

Monday, August 23, 2010

30

MapReduce HDFS

HiveHBase

Avro

Pig

Core

Zoo
Keeper

Hadoop

Chukwa

Data flow language
 Procedural SQL-inspired lang.
 Execution environment

Monday, August 23, 2010

31

Chukwa

HDFS

Pig

MapReduce

HiveHBase

AvroCore

Zoo
Keeper

Hadoop

Monday, August 23, 2010

31

Chukwa

HDFS

Pig

MapReduce

HiveHBase

AvroCore

Zoo
Keeper

Hadoop

Distributed data warehouse
 SQL-like query language
 Data mgmt / query execution

Monday, August 23, 2010

32

Hadoop

HBase

MapReduce

Core Avro

HDFS Zoo
Keeper

HivePig Chukwa … … more

Monday, August 23, 2010

33

MapReduce
 Mapper: (k1, v1) (k2, v2)[]

 E.g., (void, textline : string)

 (first : string, count : int)
 Reducer: (k2, v2[]) (k3, v3)[]

 E.g., (first : string, counts : int[])
 (first : string, total : int)

 Combiner: (k2, v2[]) (k2, v2)[]
 Partition: (k2, v2) int

Monday, August 23, 2010

34

Mapper interface
interface Mapper<K1, V1, K2, V2> {
 void configure (JobConf conf);
 void map (K1 key, V1 value,
 OutputCollector<K2, V2> out,
 Reporter reporter);
 void close();
}
 Initialize in configure()
 Clean-up in close()
 Emit via out.collect(key,val) any time

Monday, August 23, 2010

35

Reducer interface
interface Reducer<K2, V2, K3, V3> {
 void configure (JobConf conf);
 void reduce (
 K2 key, Iterator<V2> values,
 OutputCollector<K3, V3> out,
 Reporter reporter);
 void close();
}
 Initialize in configure()
 Clean-up in close()
 Emit via out.collect(key,val) any time

Monday, August 23, 2010

36

Some canonical examples
 Histogram-type jobs:

Graph construction (bucket = edge)
K-means et al. (bucket = cluster center)

 Inverted index:
Text indices
Matrix transpose

 Sorting
 Equi-join
 More details in part 2

Monday, August 23, 2010

37

Equi-joins
“Reduce-side”

(Smith, 7)

(Jones, 7)

(Brown, 7)

(Davis, 3)

(Dukes, 5)

(Black, 3)

(Gruhl, 7)

(Sales, 3)

(Devel, 7)

(Acct., 5)

MAP

MAP

Monday, August 23, 2010

37

Equi-joins
“Reduce-side”

(Smith, 7)

(Jones, 7)

(Brown, 7)

(Davis, 3)

(Dukes, 5)

(Black, 3)

(Gruhl, 7)

(Sales, 3)

(Devel, 7)

(Acct., 5)

7: (, (Smith))MAP

MAP

Monday, August 23, 2010

37

Equi-joins
“Reduce-side”

(Smith, 7)

(Jones, 7)

(Brown, 7)

(Davis, 3)

(Dukes, 5)

(Black, 3)

(Gruhl, 7)

(Sales, 3)

(Devel, 7)

(Acct., 5)

7: (, (Smith))

7: (, (Devel))

MAP

MAP

Monday, August 23, 2010

37

Equi-joins
“Reduce-side”

(Smith, 7)

(Jones, 7)

(Brown, 7)

(Davis, 3)

(Dukes, 5)

(Black, 3)

(Gruhl, 7)

(Sales, 3)

(Devel, 7)

(Acct., 5)

7: (, (Smith))

(7,): (Smith)

7: (, (Devel))

(7,): (Devel)

-OR-

-OR-

MAP

MAP

Monday, August 23, 2010

38

Equi-joins
“Reduce-side”

(Smith, 7)

(Jones, 7)

(Brown, 7)

(Davis, 3)

(Dukes, 5)

(Black, 3)

(Gruhl, 7)

(Sales, 3)

(Devel, 7)

(Acct., 5)

7: (, (Smith))

7: (, (Jones))

7: (, (Brown))

7: (, (Gruhl))

7: (, (Devel))

MAP

MAP

Monday, August 23, 2010

38

Equi-joins
“Reduce-side”

(Smith, 7)

(Jones, 7)

(Brown, 7)

(Davis, 3)

(Dukes, 5)

(Black, 3)

(Gruhl, 7)

(Sales, 3)

(Devel, 7)

(Acct., 5)

7: (, (Smith))

7: (, (Jones))

7: (, (Brown))

7: (, (Gruhl))

7: (, (Devel))

7: {(, (Smith)),
 (, (Jones)),
 (, (Brown)),
 (, (Gruhl)),
 (, (Devel)) }

MAP

MAP

SHUF.

Monday, August 23, 2010

38

Equi-joins
“Reduce-side”

(Smith, 7)

(Jones, 7)

(Brown, 7)

(Davis, 3)

(Dukes, 5)

(Black, 3)

(Gruhl, 7)

(Sales, 3)

(Devel, 7)

(Acct., 5)

7: (, (Smith))

7: (, (Jones))

7: (, (Brown))

7: (, (Gruhl))

7: (, (Devel))

7: {(, (Smith)),
 (, (Jones)),
 (, (Brown)),
 (, (Gruhl)),
 (, (Devel)) }

 (Smith, Devel),
 (Jones, Devel),
 (Brown, Devel),
 (Gruhl, Devel)

MAP

MAP

SHUF.

R
E

D
.

Monday, August 23, 2010

39

HDFS & MapReduce processes

HOST 0

SPLIT 0
Replica 1/3

MAPPER

SPLIT 1
Replica 2/3

SPLIT 3
Replica 2/3

HOST 1

SPLIT 0
Replica 2/3

SPLIT 4
Replica 1/3

SPLIT 3
Replica 1/3

HOST 2

SPLIT 3
Replica 3/3

MAPPER

SPLIT 2
Replica 2/3

SPLIT 0
Replica 3/3

HOST 3

SPLIT 2
Replica 3/3

MAPPER

SPLIT 1
Replica 1/3

SPLIT 4
Replica 2/3

MAPPER

HOST 4

HOST 5

HOST 6

REDUCER

C

C

C

C

HOST 0

HOST 1
HOST 2

HOST 3

Monday, August 23, 2010

39

HDFS & MapReduce processes

HOST 0

SPLIT 0
Replica 1/3

MAPPER

SPLIT 1
Replica 2/3

SPLIT 3
Replica 2/3

HOST 1

SPLIT 0
Replica 2/3

SPLIT 4
Replica 1/3

SPLIT 3
Replica 1/3

HOST 2

SPLIT 3
Replica 3/3

MAPPER

SPLIT 2
Replica 2/3

SPLIT 0
Replica 3/3

HOST 3

SPLIT 2
Replica 3/3

MAPPER

SPLIT 1
Replica 1/3

SPLIT 4
Replica 2/3

MAPPER

HOST 4

HOST 5

HOST 6

REDUCER

C

C

C

C

DN
DN

HOST 0

HOST 1
HOST 2

HOST 3

DATA
NODE

DATA
NODE DATA

NODE

DN

DATA
NODE

Monday, August 23, 2010

39

HDFS & MapReduce processes

HOST 0

SPLIT 0
Replica 1/3

MAPPER

SPLIT 1
Replica 2/3

SPLIT 3
Replica 2/3

HOST 1

SPLIT 0
Replica 2/3

SPLIT 4
Replica 1/3

SPLIT 3
Replica 1/3

HOST 2

SPLIT 3
Replica 3/3

MAPPER

SPLIT 2
Replica 2/3

SPLIT 0
Replica 3/3

HOST 3

SPLIT 2
Replica 3/3

MAPPER

SPLIT 1
Replica 1/3

SPLIT 4
Replica 2/3

MAPPER

HOST 4

HOST 5

HOST 6

REDUCER

C

C

C

C

DN
DN

HOST 0

HOST 1
HOST 2

HOST 3

DATA
NODE

DATA
NODE DATA

NODE

DN

DATA
NODE

NAME
NODE

Monday, August 23, 2010

39

HDFS & MapReduce processes

HOST 0

SPLIT 0
Replica 1/3

MAPPER

SPLIT 1
Replica 2/3

SPLIT 3
Replica 2/3

HOST 1

SPLIT 0
Replica 2/3

SPLIT 4
Replica 1/3

SPLIT 3
Replica 1/3

HOST 2

SPLIT 3
Replica 3/3

MAPPER

SPLIT 2
Replica 2/3

SPLIT 0
Replica 3/3

HOST 3

SPLIT 2
Replica 3/3

MAPPER

SPLIT 1
Replica 1/3

SPLIT 4
Replica 2/3

MAPPER

HOST 4

HOST 5

HOST 6

REDUCER

C

C

C

C

TT
TT

TT

DN
DN

HOST 0

HOST 1
HOST 2

HOST 3

DATA
NODE

DATA
NODE DATA

NODE

TASK
TRACKER

TASK
TRACKER TASK

TRACKER

DN

DATA
NODE

NAME
NODE

TASK
TRACKER

Monday, August 23, 2010

39

HDFS & MapReduce processes

HOST 0

SPLIT 0
Replica 1/3

MAPPER

SPLIT 1
Replica 2/3

SPLIT 3
Replica 2/3

HOST 1

SPLIT 0
Replica 2/3

SPLIT 4
Replica 1/3

SPLIT 3
Replica 1/3

HOST 2

SPLIT 3
Replica 3/3

MAPPER

SPLIT 2
Replica 2/3

SPLIT 0
Replica 3/3

HOST 3

SPLIT 2
Replica 3/3

MAPPER

SPLIT 1
Replica 1/3

SPLIT 4
Replica 2/3

MAPPER

HOST 4

HOST 5

HOST 6

REDUCER

C

C

C

C

TT
TT

TT

DN
DN

HOST 0

HOST 1
HOST 2

HOST 3

DATA
NODE

DATA
NODE DATA

NODE

TASK
TRACKER

JOB
TRACKER

TASK
TRACKER TASK

TRACKER

DN

DATA
NODE

NAME
NODE

TASK
TRACKER

Monday, August 23, 2010

40

Hadoop Streaming & Pipes
 Don’t have to use Java for MapReduce

 Hadoop Streaming:
Use stdin/stdout & text format
Any language (C/C++, Perl, Python, shell, etc)

 Hadoop Pipes:
Use sockets & binary format (more efficient)
C++ library required

Monday, August 23, 2010

41

Outline
 Introduction
 MapReduce & distributed storage
 Hadoop

HBase
Pig
Cascading
Hive

 Summary

Monday, August 23, 2010

42

HBase introduction
 MapReduce canonical example:

 Inverted index (more in Part 2)

 Batch computations on large datasets:
 Build static index on crawl snapshot

 However, in reality crawled pages are:
 Updated by crawler
 Augmented by other parsers/analytics
 Retrieved by cache search
 Etc…

Monday, August 23, 2010

43

HBase introduction
 MapReduce & HDFS:

Distributed storage + computation
Good for batch processing
But: no facilities for accessing or updating

individual items

 HBase:
Adds random-access read / write operations
Originally developed at Powerset
Based on Google’s Bigtable

Monday, August 23, 2010

44

HBase data model

Column family
Column

Row

key

Partitioned over many nodes
Monday, August 23, 2010

44

HBase data model

Column family
Column

Row

key

(millions)

(billions;
sorted)

(hundreds; fixed)

(thousands)Partitioned over many nodes
Monday, August 23, 2010

44

HBase data model

Column family
Column

Row

key

(millions)

(billions;
sorted)

(hundreds; fixed)

(thousands)Partitioned over many nodes

Keys and cell values are
arbitrary byte arrays

Monday, August 23, 2010

44

HBase data model

Column family
Column

Row

key

(millions)

(billions;
sorted)

(hundreds; fixed)

(thousands)Partitioned over many nodes

Can use any underlying data
store (local, HDFS, S3, etc)

Keys and cell values are
arbitrary byte arrays

Monday, August 23, 2010

45

Data model example

empId

profile:last profile:first profile:salary

profile: family

Smith John $90,000

Monday, August 23, 2010

46

Data model example

empId

profile:last profile:first profile:salary

profile: family

Smith John $90,000

bm: (bookmarks) family

bm:url1 bm:urlN

Monday, August 23, 2010

46

Data model example

empId

profile:last profile:first profile:salary

profile: family

Smith John $90,000

Always access via primary key

bm: (bookmarks) family

bm:url1 bm:urlN

Monday, August 23, 2010

47

HBase vs. RDBMS
 Different solution, similar problems
 RDBMSes:

 Row-oriented
 Fixed-schema
 ACID

 HBase et al.:
 Designed from ground-up to scale out, by adding

commodity machines
 Simple consistency scheme: atomic row writes
 Fault tolerance
 Batch processing
 No (real) indexes

Monday, August 23, 2010

48

Outline
 Introduction
 MapReduce & distributed storage
 Hadoop

HBase
Pig
Cascading
Hive

 Summary

Monday, August 23, 2010

49

Pig introduction
 “ ~5 lines of non-boilerplate code ”
 Writing a single MapReduce job requires

significant gruntwork
Boilerplates (mapper/reducer, create job, etc)
 Input / output formats

 Many tasks require more than one
MapReduce job

Monday, August 23, 2010

50

Pig main features
 Data structures (multi-valued, nested)
 Pig-latin: data flow language

SQL-inspired, but imperative (not declarative)

Monday, August 23, 2010

51

Pig example

records = LOAD filename
 AS (last: chararray, first: chararray, salary:int);
grouped = GROUP records BY first;
counts = FOREACH grouped
 GENERATE group, COUNT(records.first);
DUMP counts;

LAST FIRST SALARY
Smith John $90,000
Brown David $70,000
Johnson George $95,000
Yates John $80,000
Miller Bill $65,000
Moore Jack $85,000
Taylor Fred $75,000
Smith David $80,000
Harris John $90,000
...
...

employees.txt

Q: “What is the frequency of
each first name?”

Monday, August 23, 2010

52

Pig schemas
 Schema = tuple data type

 Schemas are optional!
Data-loading step is not required
“Unknown” schema: similar to AWK ($0, $1, ..)

 Support for most common datatypes
 Support for nesting

Monday, August 23, 2010

53

Pig Latin feature summary
 Data loading / storing

 LOAD / STORE / DUMP
 Filtering

 FILTER / DISTINCT / FOREACH / STREAM
 Group-by

 GROUP
 Join & co-group

 JOIN / COGROUP / CROSS
 Sorting

 ORDER / LIMIT
 Combining / splitting

 UNION / SPLIT

Monday, August 23, 2010

54

Outline
 Introduction
 MapReduce & distributed storage
 Hadoop

HBase
Pig
Cascading
Hive

 Summary

Monday, August 23, 2010

55

Cascading introduction
 Provides higher-level abstraction

Fields, Tuples
Pipes
Operations
Taps, Schemes, Flows

 Ease composition of multi-job flows

Monday, August 23, 2010

55

Cascading introduction
 Provides higher-level abstraction

Fields, Tuples
Pipes
Operations
Taps, Schemes, Flows

 Ease composition of multi-job flows

Library, not a new language
Monday, August 23, 2010

56

Cascading example
Scheme srcScheme = new TextLine();
Tap source = new Hfs(srcScheme, filename);
Scheme dstScheme = new TextLine();
Tap sink = new Hfs(dstScheme, filename, REPLACE);

Pipe assembly = new Pipe(“lastnames”);

Function splitter = new RegexSplitter(
 new Fields(“last”, “first”, “salary”), “\t”);
assembly = new Each(assembly, new Fields(“line”), splitter);

assembly = new GroupBy(assembly, new Fields(“first”));

Aggregator count = new Count(new Fields(“count”));
assembly = new Every(assembly, count);

FlowConnector flowConnector = new FlowConnector();
Flow flow = flowConnector.connect(“last-names”,
 source, sink, assembly);
flow.complete();

LAST FIRST SALARY
Smith John $90,000
Brown David $70,000
...

employees.txt

Q: “What is the frequency
of each first name?”

Monday, August 23, 2010

56

Cascading example
Scheme srcScheme = new TextLine();
Tap source = new Hfs(srcScheme, filename);
Scheme dstScheme = new TextLine();
Tap sink = new Hfs(dstScheme, filename, REPLACE);

Pipe assembly = new Pipe(“lastnames”);

Function splitter = new RegexSplitter(
 new Fields(“last”, “first”, “salary”), “\t”);
assembly = new Each(assembly, new Fields(“line”), splitter);

assembly = new GroupBy(assembly, new Fields(“first”));

Aggregator count = new Count(new Fields(“count”));
assembly = new Every(assembly, count);

FlowConnector flowConnector = new FlowConnector();
Flow flow = flowConnector.connect(“last-names”,
 source, sink, assembly);
flow.complete();

LAST FIRST SALARY
Smith John $90,000
Brown David $70,000
...

employees.txt

Q: “What is the frequency
of each first name?”

Monday, August 23, 2010

57

Cascading feature summary
 Pipes: transform streams of tuples

Each
GroupBy / CoGroup
Every
SubAssembly

 Operations: what is done to tuples
Function
Filter
Aggregator / Buffer

Monday, August 23, 2010

58

Outline
 Introduction
 MapReduce & distributed storage
 Hadoop

HBase
Pig
Cascading
Hive

 Summary

Monday, August 23, 2010

59

Hive introduction
 Originally developed at Facebook

Now a Hadoop sub-project
 Data warehouse infrastructure

Execution: MapReduce
Storage: HDFS files

 Large datasets, e.g. Facebook daily logs
30GB (Jan’08), 200GB (Mar’08), 15+TB (2009)

 Hive QL: SQL-like query language

Monday, August 23, 2010

60

Hive example

CREATE EXTERNAL TABLE records
 (last STRING, first STRING, salary INT)
ROW FORMAT DELIMETED
 FIELDS TERMINATED BY ’\t’
STORED AS TEXTFILE
LOCATION filename;

SELECT records.first, COUNT(1)
FROM records
GROUP BY records.first;

LAST FIRST SALARY
Smith John $90,000
Brown David $70,000
Johnson George $95,000
Yates John $80,000
Miller Bill $65,000
Moore Jack $85,000
Taylor Fred $75,000
Smith David $80,000
Harris John $90,000
...
...

employees.txt

Q: “What is the frequency of
each first name?”

Monday, August 23, 2010

61

Hive schemas
 Data should belong to tables

 But can also use pre-existing data
 Data loading optional (like Pig) but encouraged

 Partitioning columns:
 Mapped to HDFS directories
 E.g., (date, time) datadir/2009-03-12/18_30_00

 Data columns (the rest):
 Stored in HDFS files

 Support for most common data types
 Support for pluggable serialization

Monday, August 23, 2010

62

Hive QL feature summary
 Basic SQL

 FROM subqueries
 JOIN (only equi-joins)
 Multi GROUP BY
 Multi-table insert
 Sampling

 Extensibility
 Pluggable MapReduce scripts
 User Defined Functions
 User Defined Types
 SerDe (serializer / deserializer)

Monday, August 23, 2010

63

Outline
 Introduction
 MapReduce & distributed storage
 Hadoop

HBase
Pig
Cascading
Hive

 Summary

Monday, August 23, 2010

64

Recap

Monday, August 23, 2010

64

Recap
 Scalable: all

Monday, August 23, 2010

64

Recap
 Scalable: all
 High(-er) level: all except MR

Monday, August 23, 2010

64

Recap
 Scalable: all
 High(-er) level: all except MR
 Existing language: MR, Cascading

Monday, August 23, 2010

64

Recap
 Scalable: all
 High(-er) level: all except MR
 Existing language: MR, Cascading
 “Schemas”: HBase, Pig, Hive, (Casc.)

Pluggable data types: all

Monday, August 23, 2010

64

Recap
 Scalable: all
 High(-er) level: all except MR
 Existing language: MR, Cascading
 “Schemas”: HBase, Pig, Hive, (Casc.)

Pluggable data types: all
 Easy transition: Hive, (Pig)

Monday, August 23, 2010

65

Related projects
Higher level—computation:
 Dryad & DryadLINQ (Microsoft) [EuroSys 2007]
 Sawzall (Google) [Sci Prog Journal 2005]

Higher level—storage:
 Bigtable [OSDI 2006] / Hypertable

Lower level:
 Kosmos Filesystem (Kosmix)
 VSN (Parascale)
 EC2 / S3 (Amazon)
 Ceph / Lustre / PanFS

 Sector / Sphere (http://sector.sf.net/)
 …

Monday, August 23, 2010

http://sector.sf.net/
http://sector.sf.net/

66

Summary
MapReduce:
 Simplified parallel programming model
Hadoop:
 Built from ground-up for:

Scalability
Fault-tolerance
Clusters of commodity hardware

 Growing collection of components and
extensions (HBase, Pig, Hive, etc)

Monday, August 23, 2010

67

Tutorial overview
 Part 1 (Spiros): Basic concepts & tools

 MapReduce & distributed storage
 Hadoop / HBase / Pig / Cascading / Hive

 Part 2 (Jimeng): Algorithms
 Information retrieval
 Graph algorithms
 Clustering (k-means)
 Classification (k-NN, naïve Bayes)

 Part 3 (Rong): Applications
 Text processing
 Data warehousing
 Machine learning

NEXT:

Monday, August 23, 2010

Large-scale Data Mining:
MapReduce and beyond

Part 1: Basics

Spiros Papadimitriou, Google
Jimeng Sun, IBM Research

Rong Yan, Facebook

Monday, August 23, 2010

