
Large-scale Data Mining: 
MapReduce and beyond

Part 1: Basics

Spiros Papadimitriou, Google
Jimeng Sun, IBM Research

Rong Yan, Facebook

Monday, August 23, 2010



2

Data everywhere

Monday, August 23, 2010



2

Data everywhere

 Flickr (3 billion photos) 
 YouTube (83M videos, 15 hrs/min)
 Web (10B videos watched / mo.)
 Digital photos (500 billion / year)
 All broadcast (70,000TB / year)
 Yahoo! Webmap (3 trillion links, 

300TB compressed, 5PB disk)
 Human genome (2-30TB uncomp.)

Monday, August 23, 2010



2

Data everywhere

 Flickr (3 billion photos) 
 YouTube (83M videos, 15 hrs/min)
 Web (10B videos watched / mo.)
 Digital photos (500 billion / year)
 All broadcast (70,000TB / year)
 Yahoo! Webmap (3 trillion links, 

300TB compressed, 5PB disk)
 Human genome (2-30TB uncomp.)

So what ??
Monday, August 23, 2010



2

Data everywhere

 Flickr (3 billion photos) 
 YouTube (83M videos, 15 hrs/min)
 Web (10B videos watched / mo.)
 Digital photos (500 billion / year)
 All broadcast (70,000TB / year)
 Yahoo! Webmap (3 trillion links, 

300TB compressed, 5PB disk)
 Human genome (2-30TB uncomp.)

So what ??

more is:

Monday, August 23, 2010



2

Data everywhere

 Flickr (3 billion photos) 
 YouTube (83M videos, 15 hrs/min)
 Web (10B videos watched / mo.)
 Digital photos (500 billion / year)
 All broadcast (70,000TB / year)
 Yahoo! Webmap (3 trillion links, 

300TB compressed, 5PB disk)
 Human genome (2-30TB uncomp.)

So what ??

more is:
more …

Monday, August 23, 2010



2

Data everywhere

 Flickr (3 billion photos) 
 YouTube (83M videos, 15 hrs/min)
 Web (10B videos watched / mo.)
 Digital photos (500 billion / year)
 All broadcast (70,000TB / year)
 Yahoo! Webmap (3 trillion links, 

300TB compressed, 5PB disk)
 Human genome (2-30TB uncomp.)

So what ??

more is:
different! 

more is:
more …

Monday, August 23, 2010



3

Data everywhere
 Opportunities

Real-time access to content
Richer context from users and hyperlinks 
Abundant training examples
“Brute-force” methods may suffice

 Challenges
“Dirtier” data
Efficient algorithms
Scalability (with reasonable cost)
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“The Google Way”
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“The Google Way”
“All models are wrong, but some are useful”   

– George Box
“All models are wrong, and increasingly you 
can succeed without them.” – Peter Norvig

 Google PageRank
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 Language translation
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Chris Anderson, Wired (July 2008)
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Getting over the marketing hype…

Cloud Computing
= 

Internet 
+

Commoditization/
standardization ‘It’s what I and many others have worked towards our entire 

careers.  It’s just happening now.’

 – Eric Schmidt
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This tutorial
 Is not about cloud computing
 But about large scale data processing
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This tutorial
 Is not about cloud computing
 But about large scale data processing

Data + Algorithms
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Tutorial overview
 Part 1 (Spiros): Basic concepts & tools

 MapReduce & distributed storage
 Hadoop / HBase / Pig / Cascading / Hive

 Part 2 (Jimeng): Algorithms
 Information retrieval
 Graph algorithms 
 Clustering (k-means) 
 Classification (k-NN, naïve Bayes)

 Part 3 (Rong): Applications
 Text processing
 Data warehousing
 Machine learning

Monday, August 23, 2010
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Outline
 Introduction
 MapReduce & distributed storage
 Hadoop

HBase
Pig
Cascading
Hive

 Summary
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What is MapReduce?

 Programming model?

 Execution environment?

 Software package?
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 Execution environment?

 Software package?

It’s all of those things, depending who you ask…
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What is MapReduce?

 Programming model?

 Execution environment?

 Software package?

It’s all of those things, depending who you ask…

“MapReduce” (this talk)
==

Distributed computation + 
distributed storage + 

scheduling / fault tolerance
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10

Example – Programming model

# LAST FIRST SALARY 
Smith John $90,000
Brown David $70,000
Johnson George $95,000
Yates John $80,000
Miller Bill $65,000
Moore Jack $85,000
Taylor Fred $75,000
Smith David $80,000
Harris John $90,000
... ... ...
... ... ...

employees.txt

Q: “What is the frequency 
of each first name?”
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Example – Programming model

# LAST FIRST SALARY 
Smith John $90,000
Brown David $70,000
Johnson George $95,000
Yates John $80,000
Miller Bill $65,000
Moore Jack $85,000
Taylor Fred $75,000
Smith David $80,000
Harris John $90,000
... ... ...
... ... ...

employees.txt

Q: “What is the frequency 
of each first name?”

mapper

reducer

def getName (line):
 return  line.split(‘\t’)[1]

def addCounts (hist,  name):
 hist[name] = \
 hist.get(name,default=0) + 1
 return hist

input = open(‘employees.txt’, ‘r’)

intermediate = map(getName, input)

result = reduce(addCounts, \ 
     
intermediate, {})
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def getName (line):
 return (line.split(‘\t’)[1], 1)

def addCounts (hist, (name, c)):
 hist[name] = \
 hist.get(name,default=0) + c
 return hist

input = open(‘employees.txt’, ‘r’)

intermediate = map(getName, input)

result = reduce(addCounts, \ 
     
intermediate, {})

Example – Programming model
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Smith John $90,000
Brown David $70,000
Johnson George $95,000
Yates John $80,000
Miller Bill $65,000
Moore Jack $85,000
Taylor Fred $75,000
Smith David $80,000
Harris John $90,000
... ... ...
... ... ...

employees.txt

Q: “What is the frequency 
of each first name?”

mapper

reducer
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def getName (line):
 return (line.split(‘\t’)[1], 1)

def addCounts (hist, (name, c)):
 hist[name] = \
 hist.get(name,default=0) + c
 return hist

input = open(‘employees.txt’, ‘r’)

intermediate = map(getName, input)

result = reduce(addCounts, \ 
     
intermediate, {})

Example – Programming model

# LAST FIRST SALARY 
Smith John $90,000
Brown David $70,000
Johnson George $95,000
Yates John $80,000
Miller Bill $65,000
Moore Jack $85,000
Taylor Fred $75,000
Smith David $80,000
Harris John $90,000
... ... ...
... ... ...

employees.txt

Q: “What is the frequency 
of each first name?”

mapper

reducer

Key-value iterators
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public class HistogramJob extends Configured implements Tool {

  public static class FieldMapper extends MapReduceBase
      implements Mapper<LongWritable,Text,Text,LongWritable> {

    private static LongWritable ONE = new LongWritable(1);
    private static Text firstname = new Text();
  
    @Override
    public void map (LongWritable key, Text value,
        OutputCollector<Text,LongWritable> out, Reporter r) {
      firstname.set(value.toString().split(“\t”)[1]);
      output.collect(firstname, ONE);
    }
  } // class FieldMapper 

Example – Programming model
Hadoop / Java
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public class HistogramJob extends Configured implements Tool {

  public static class FieldMapper extends MapReduceBase
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    @Override
    public void map (LongWritable key, Text value,
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Example – Programming model
Hadoop / Java

non-boilerplate
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public class HistogramJob extends Configured implements Tool {

  public static class FieldMapper extends MapReduceBase
      implements Mapper<LongWritable,Text,Text,LongWritable> {

    private static LongWritable ONE = new LongWritable(1);
    private static Text firstname = new Text();
  
    @Override
    public void map (LongWritable key, Text value,
        OutputCollector<Text,LongWritable> out, Reporter r) {
      firstname.set(value.toString().split(“\t”)[1]);
      output.collect(firstname, ONE);
    }
  } // class FieldMapper 

Example – Programming model
Hadoop / Java

non-boilerplate

typed…

Monday, August 23, 2010
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Example – Programming model
Hadoop / Java

  public static class LongSumReducer extends MapReduceBase
      implements Mapper<LongWritable,Text,Text,LongWritable> {

    private static LongWritable sum = new LongWritable();
  
    @Override
    public void reduce (Text key, Iterator<LongWritable> vals,
        OutputCollector<Text,LongWritable> out, Reporter r) {
      long s = 0;
      while (vals.hasNext())
        s += vals.next().get();
      sum.set(s);
      output.collect(key, sum);
    }
  } // class LongSumReducer 
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Example – Programming model
Hadoop / Java

  public static class LongSumReducer extends MapReduceBase
      implements Mapper<LongWritable,Text,Text,LongWritable> {

    private static LongWritable sum = new LongWritable();
  
    @Override
    public void reduce (Text key, Iterator<LongWritable> vals,
        OutputCollector<Text,LongWritable> out, Reporter r) {
      long s = 0;
      while (vals.hasNext())
        s += vals.next().get();
      sum.set(s);
      output.collect(key, sum);
    }
  } // class LongSumReducer 
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Example – Programming model
Hadoop / Java

  public int run (String[] args) throws Exception {
    JobConf job = new JobConf(getConf(), HistogramJob.class);
    job.setJobName(“Histogram”);
    FileInputFormat.setInputPaths(job, args[0]);
    job.setMapperClass(FieldMapper.class);
    job.setCombinerClass(LongSumReducer.class);
    job.setReducerClass(LongSumReducer.class);
    // ...
    JobClient.runJob(job);
    return 0;
  } // run()

  public static main (String[] args) throws Exception {
    ToolRunner.run(new Configuration(), new HistogramJob(), args);
  } // main()
} // class HistogramJob

Monday, August 23, 2010
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Example – Programming model
Hadoop / Java

  public int run (String[] args) throws Exception {
    JobConf job = new JobConf(getConf(), HistogramJob.class);
    job.setJobName(“Histogram”);
    FileInputFormat.setInputPaths(job, args[0]);
    job.setMapperClass(FieldMapper.class);
    job.setCombinerClass(LongSumReducer.class);
    job.setReducerClass(LongSumReducer.class);
    // ...
    JobClient.runJob(job);
    return 0;
  } // run()

  public static main (String[] args) throws Exception {
    ToolRunner.run(new Configuration(), new HistogramJob(), args);
  } // main()
} // class HistogramJob

~ 30 lines = 25 boilerplate (Eclipse) + 5 actual code
Monday, August 23, 2010
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MapReduce for…
 Distributed clusters

 Google’s original
 Hadoop (Apache Software Foundation)

 Hardware
 SMP/CMP: Phoenix (Stanford)
 Cell BE

 Other
 Skynet (in Ruby/DRB)
 QtConcurrent
 BashReduce
 …many more
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Recap

Quick-n-dirty script Hadoop

~5 lines of (non-boilerplate) code~5 lines of (non-boilerplate) code

Single machine, 
local drive

Up to thousands of 
machines and drives

vs
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Recap

What is hidden to achieve this:
 Data partitioning, placement and replication
 Computation placement (and replication)
 Number of nodes (mappers / reducers)
 …

Quick-n-dirty script Hadoop

~5 lines of (non-boilerplate) code~5 lines of (non-boilerplate) code

Single machine, 
local drive

Up to thousands of 
machines and drives

vs

As a programmer, you don’t need to know 
what I’m about to show you next…

Monday, August 23, 2010
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Execution model: Flow

SPLIT 0

SPLIT 1

SPLIT 2

SPLIT 3

MAPPER

REDUCER
MAPPER

MAPPER
REDUCER

PART 0

PART 1

MAPPER

Input file

Output file
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Execution model: Placement
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Execution model: Placement
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Computation co-located with data (as much as possible)
Monday, August 23, 2010
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MapReduce Summary
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MapReduce Summary

 Simple programming model
 Scalable, fault-tolerant
 Ideal for (pre-)processing large volumes of 

data
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MapReduce Summary

 Simple programming model
 Scalable, fault-tolerant
 Ideal for (pre-)processing large volumes of 

data‘However, if the data center is the computer, it leads to the even 
more intriguing question “What is the equivalent of the ADD 
instruction for a data center?” […] If MapReduce is the first 
instruction of the “data center computer”, I can’t wait to 
see the rest of the instruction set, as well as the data center 
programming language, the data center operating system, the 
data center storage systems, and more.’

 – David Patterson, “The Data Center Is The Computer”, 
CACM, Jan. 2008

Monday, August 23, 2010
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Outline
 Introduction
 MapReduce & distributed storage
 Hadoop

HBase
Pig
Cascading
Hive

 Summary
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Hadoop

HBase

MapReduce

Core Avro

HDFS Zoo
Keeper

HivePig Chukwa
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Hadoop

HBase

MapReduce

Core Avro

HDFS Zoo
Keeper

HivePig Chukwa

Hadoop’s stated mission (Doug Cutting interview):

Commoditize infrastructure for web-scale,
data-intensive applications

Monday, August 23, 2010
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Who uses Hadoop?
 Yahoo!
 Facebook
 Last.fm
 Rackspace
 Digg

 Apache Nutch

 … more in part 3

Monday, August 23, 2010
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MapReduce

Avro

HDFS

Hadoop

HBase

Core

Zoo
Keeper

HivePig Chukwa
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MapReduce

Avro

HDFS

Hadoop

HBase

Core

Zoo
Keeper

HivePig Chukwa

Filesystems and I/O:
 Abstraction APIs
 RPC / Persistence
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Core

Zoo
KeeperMapReduce HDFS

Hadoop

HBase HivePig Chukwa

Avro
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Core

Zoo
KeeperMapReduce HDFS

Hadoop

HBase HivePig Chukwa

Cross-language serialization:
 RPC / persistence
 ~ Google ProtoBuf / FB Thrift

Avro
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HBase HivePig

Core

Zoo
KeeperHDFS

Hadoop

Chukwa

Avro

MapReduce
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HBase HivePig

Core

Zoo
KeeperHDFS

Hadoop

Chukwa
Distributed execution (batch)
 Programming model
 Scalability / fault-tolerance

Avro

MapReduce
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MapReduce
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MapReduce

Chukwa

Avro

HBase HivePig

Core

Zoo
Keeper

Hadoop

Distributed storage (read-opt.)
 Replication / scalability
 ~ Google filesystem (GFS)

HDFS
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HDFS

Chukwa

Avro

HBase HivePig

Core

Zoo
Keeper

Hadoop

MapReduce
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HDFS

Chukwa

Avro

HBase HivePig

Core

Zoo
Keeper

Hadoop

Coordination service
 Locking / configuration
 ~ Google Chubby

MapReduce
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Avro

MapReduce

HivePigHBase

Core

Zoo
KeeperHDFS
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Avro

MapReduce

HivePigHBase

Core

Zoo
KeeperHDFS

Hadoop

Chukwa

Column-oriented, sparse store
 Batch & random access
 ~ Google BigTable
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MapReduce HDFS

HiveHBase

Avro

Pig

Core

Zoo
Keeper

Hadoop

Chukwa

Data flow language
 Procedural SQL-inspired lang.
 Execution environment
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Chukwa

HDFS

Pig

MapReduce

HiveHBase

AvroCore
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Hadoop
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Chukwa

HDFS

Pig

MapReduce

HiveHBase

AvroCore

Zoo
Keeper

Hadoop

Distributed data warehouse
 SQL-like query language
 Data mgmt / query execution

Monday, August 23, 2010



32

Hadoop

HBase

MapReduce

Core Avro

HDFS Zoo
Keeper

HivePig Chukwa … …  more

Monday, August 23, 2010



33

MapReduce
 Mapper: (k1, v1)  (k2, v2)[]

 E.g., (void, textline : string) 

    (first : string, count : int) 
 Reducer:  (k2, v2[])  (k3, v3)[]

 E.g., (first : string, counts : int[]) 
    (first : string, total : int)

 Combiner: (k2, v2[])  (k2, v2)[]
 Partition: (k2, v2)  int
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Mapper interface
interface Mapper<K1, V1, K2, V2> {
 void configure (JobConf conf);
 void map (K1 key, V1 value,
  OutputCollector<K2, V2> out,
  Reporter reporter);
 void close();
}
 Initialize in configure()
 Clean-up in close()
 Emit via out.collect(key,val) any time
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Reducer interface
interface Reducer<K2, V2, K3, V3> {
 void configure (JobConf conf);
 void reduce (
  K2 key, Iterator<V2> values,
  OutputCollector<K3, V3> out,
  Reporter reporter);
 void close();
}
 Initialize in configure()
 Clean-up in close()
 Emit via out.collect(key,val) any time
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Some canonical examples
 Histogram-type jobs:

Graph construction (bucket = edge)
K-means et al. (bucket = cluster center)

 Inverted index:
Text indices
Matrix transpose

 Sorting
 Equi-join
 More details in part 2
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Equi-joins
“Reduce-side”

(Smith, 7)

(Jones, 7)

(Brown, 7)

(Davis, 3)

(Dukes, 5)

(Black, 3)

(Gruhl, 7)

(Sales, 3)

(Devel, 7)

(Acct., 5)

MAP

MAP
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Equi-joins
“Reduce-side”

(Smith, 7)

(Jones, 7)

(Brown, 7)

(Davis, 3)

(Dukes, 5)

(Black, 3)

(Gruhl, 7)

(Sales, 3)

(Devel, 7)

(Acct., 5)

7: (, (Smith))MAP

MAP
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Equi-joins
“Reduce-side”
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(Devel, 7)

(Acct., 5)
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Equi-joins
“Reduce-side”

(Smith, 7)

(Jones, 7)

(Brown, 7)

(Davis, 3)

(Dukes, 5)

(Black, 3)

(Gruhl, 7)

(Sales, 3)

(Devel, 7)

(Acct., 5)

7: (, (Smith))

(7,): (Smith)

7: (, (Devel))

(7,): (Devel)

-OR-

-OR-

MAP

MAP
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Equi-joins
“Reduce-side”

(Smith, 7)

(Jones, 7)

(Brown, 7)

(Davis, 3)

(Dukes, 5)

(Black, 3)

(Gruhl, 7)

(Sales, 3)

(Devel, 7)

(Acct., 5)

7: (, (Smith))

7: (, (Jones))

7: (, (Brown))

7: (, (Gruhl))

7: (, (Devel))

MAP

MAP
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Equi-joins
“Reduce-side”

(Smith, 7)

(Jones, 7)

(Brown, 7)

(Davis, 3)

(Dukes, 5)

(Black, 3)

(Gruhl, 7)

(Sales, 3)

(Devel, 7)

(Acct., 5)

7: (, (Smith))

7: (, (Jones))

7: (, (Brown))

7: (, (Gruhl))

7: (, (Devel))

7: {(, (Smith)),
    (, (Jones)),
    (, (Brown)),
    (, (Gruhl)),
    (, (Devel)) }

MAP

MAP

SHUF.
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Equi-joins
“Reduce-side”

(Smith, 7)

(Jones, 7)

(Brown, 7)

(Davis, 3)

(Dukes, 5)

(Black, 3)

(Gruhl, 7)

(Sales, 3)

(Devel, 7)

(Acct., 5)

7: (, (Smith))

7: (, (Jones))

7: (, (Brown))

7: (, (Gruhl))

7: (, (Devel))

7: {(, (Smith)),
    (, (Jones)),
    (, (Brown)),
    (, (Gruhl)),
    (, (Devel)) }

 (Smith, Devel),
 (Jones, Devel),
 (Brown, Devel),
 (Gruhl, Devel)   

MAP

MAP

SHUF.

R
E

D
.
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HDFS & MapReduce processes

HOST 0

SPLIT 0
Replica 1/3

MAPPER

SPLIT 1
Replica 2/3

SPLIT 3
Replica 2/3

HOST 1

SPLIT 0
Replica 2/3
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Replica 1/3
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Replica 1/3
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Replica 3/3

MAPPER
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Replica 2/3

SPLIT 0
Replica 3/3

HOST 3

SPLIT 2
Replica 3/3

MAPPER

SPLIT 1
Replica 1/3

SPLIT 4
Replica 2/3

MAPPER

HOST 4

HOST 5

HOST 6

REDUCER

C

C

C

C

HOST 0

HOST 1
HOST 2

HOST 3
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HDFS & MapReduce processes
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HDFS & MapReduce processes
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Hadoop Streaming & Pipes
 Don’t have to use Java for MapReduce

 Hadoop Streaming:
Use stdin/stdout & text format
Any language (C/C++, Perl, Python, shell, etc)

 Hadoop Pipes:
Use sockets & binary format (more efficient)
C++ library required
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Outline
 Introduction
 MapReduce & distributed storage
 Hadoop

HBase
Pig
Cascading
Hive

 Summary
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HBase introduction
 MapReduce canonical example:

 Inverted index (more in Part 2)

 Batch computations on large datasets:
 Build static index on crawl snapshot

 However, in reality crawled pages are:
 Updated by crawler
 Augmented by other parsers/analytics
 Retrieved by cache search
 Etc…
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HBase introduction
 MapReduce & HDFS:

Distributed storage + computation
Good for batch processing
But: no facilities for accessing or updating 

individual items

 HBase:
Adds random-access read / write operations
Originally developed at Powerset
Based on Google’s Bigtable
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HBase data model

Column family
Column

Row

key

Partitioned over many nodes
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HBase data model

Column family
Column

Row

key

(millions)

(billions;
sorted)

(hundreds; fixed)

(thousands)Partitioned over many nodes
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HBase data model

Column family
Column

Row

key

(millions)

(billions;
sorted)

(hundreds; fixed)

(thousands)Partitioned over many nodes

Keys and cell values are 
arbitrary byte arrays
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HBase data model

Column family
Column

Row

key

(millions)

(billions;
sorted)

(hundreds; fixed)

(thousands)Partitioned over many nodes

Can use any underlying data 
store (local, HDFS, S3, etc)

Keys and cell values are 
arbitrary byte arrays
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Data model example

empId

profile:last profile:first profile:salary

profile: family

Smith    John     $90,000
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Data model example

empId

profile:last profile:first profile:salary

profile: family

Smith    John     $90,000

bm: (bookmarks) family

bm:url1 bm:urlN
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Data model example

empId

profile:last profile:first profile:salary

profile: family

Smith    John     $90,000

Always access via primary key

bm: (bookmarks) family

bm:url1 bm:urlN
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HBase vs. RDBMS
 Different solution, similar problems
 RDBMSes:

 Row-oriented
 Fixed-schema
 ACID

 HBase et al.:
 Designed from ground-up to scale out, by adding 

commodity machines
 Simple consistency scheme: atomic row writes
 Fault tolerance
 Batch processing
 No (real) indexes
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Outline
 Introduction
 MapReduce & distributed storage
 Hadoop

HBase
Pig
Cascading
Hive

 Summary
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Pig introduction
 “ ~5 lines of non-boilerplate code ”
 Writing a single MapReduce job requires 

significant gruntwork
Boilerplates (mapper/reducer, create job, etc)
 Input / output formats

 Many tasks require more than one 
MapReduce job
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Pig main features
 Data structures (multi-valued, nested)
 Pig-latin: data flow language

SQL-inspired, but imperative (not declarative)
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Pig example

records = LOAD filename 
 AS (last: chararray, first: chararray, salary:int);
grouped = GROUP records BY first;
counts = FOREACH grouped 
 GENERATE group, COUNT(records.first);
DUMP counts;

# LAST FIRST SALARY
Smith John $90,000
Brown David $70,000
Johnson George $95,000
Yates John $80,000
Miller Bill $65,000
Moore Jack $85,000
Taylor Fred $75,000
Smith David $80,000
Harris John $90,000
... ... ...
... ... ...

employees.txt

Q: “What is the frequency of 
each first name?”
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Pig schemas
 Schema = tuple data type

 Schemas are optional!
Data-loading step is not required
“Unknown” schema: similar to AWK ($0, $1, ..)

 Support for most common datatypes
 Support for nesting
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Pig Latin feature summary
 Data loading / storing

 LOAD / STORE / DUMP
 Filtering

 FILTER / DISTINCT / FOREACH / STREAM
 Group-by

 GROUP
 Join & co-group

 JOIN / COGROUP / CROSS
 Sorting

 ORDER / LIMIT
 Combining / splitting

 UNION / SPLIT

Monday, August 23, 2010



54

Outline
 Introduction
 MapReduce & distributed storage
 Hadoop

HBase
Pig
Cascading
Hive

 Summary
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Cascading introduction
 Provides higher-level abstraction

Fields, Tuples
Pipes
Operations
Taps, Schemes, Flows

 Ease composition of multi-job flows
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Cascading introduction
 Provides higher-level abstraction

Fields, Tuples
Pipes
Operations
Taps, Schemes, Flows

 Ease composition of multi-job flows

Library, not a new language
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Cascading example
Scheme srcScheme = new TextLine();
Tap source = new Hfs(srcScheme, filename);
Scheme dstScheme = new TextLine();
Tap sink = new Hfs(dstScheme, filename, REPLACE);

Pipe assembly = new Pipe(“lastnames”);

Function splitter = new RegexSplitter(
  new Fields(“last”, “first”, “salary”), “\t”);
assembly = new Each(assembly, new Fields(“line”), splitter);

assembly = new GroupBy(assembly, new Fields(“first”));

Aggregator count = new Count(new Fields(“count”));
assembly = new Every(assembly, count);

FlowConnector flowConnector = new FlowConnector();
Flow flow = flowConnector.connect(“last-names”, 
    source, sink, assembly);
flow.complete();

# LAST FIRST SALARY
Smith John $90,000
Brown David $70,000
... ... ...

employees.txt

Q: “What is the frequency  
of each first name?”
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Cascading example
Scheme srcScheme = new TextLine();
Tap source = new Hfs(srcScheme, filename);
Scheme dstScheme = new TextLine();
Tap sink = new Hfs(dstScheme, filename, REPLACE);

Pipe assembly = new Pipe(“lastnames”);

Function splitter = new RegexSplitter(
  new Fields(“last”, “first”, “salary”), “\t”);
assembly = new Each(assembly, new Fields(“line”), splitter);

assembly = new GroupBy(assembly, new Fields(“first”));

Aggregator count = new Count(new Fields(“count”));
assembly = new Every(assembly, count);

FlowConnector flowConnector = new FlowConnector();
Flow flow = flowConnector.connect(“last-names”, 
    source, sink, assembly);
flow.complete();

# LAST FIRST SALARY
Smith John $90,000
Brown David $70,000
... ... ...

employees.txt

Q: “What is the frequency  
of each first name?”
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Cascading feature summary
 Pipes: transform streams of tuples

Each
GroupBy / CoGroup
Every
SubAssembly

 Operations: what is done to tuples
Function
Filter
Aggregator / Buffer
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Outline
 Introduction
 MapReduce & distributed storage
 Hadoop

HBase
Pig
Cascading
Hive

 Summary
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Hive introduction
 Originally developed at Facebook

Now a Hadoop sub-project
 Data warehouse infrastructure

Execution: MapReduce
Storage: HDFS files

 Large datasets, e.g. Facebook daily logs
30GB (Jan’08), 200GB (Mar’08), 15+TB (2009)

 Hive QL: SQL-like query language
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Hive example

CREATE EXTERNAL TABLE records
 (last STRING, first STRING, salary INT)
ROW FORMAT DELIMETED 
 FIELDS TERMINATED BY ’\t’ 
STORED AS TEXTFILE 
LOCATION filename;

SELECT records.first, COUNT(1)
FROM records 
GROUP BY records.first;

# LAST FIRST SALARY
Smith John $90,000
Brown David $70,000
Johnson George $95,000
Yates John $80,000
Miller Bill $65,000
Moore Jack $85,000
Taylor Fred $75,000
Smith David $80,000
Harris John $90,000
... ... ...
... ... ...

employees.txt

Q: “What is the frequency of 
each first name?”
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Hive schemas
 Data should belong to tables

 But can also use pre-existing data
 Data loading optional (like Pig) but encouraged

 Partitioning columns:
 Mapped to HDFS directories
 E.g., (date, time)  datadir/2009-03-12/18_30_00

 Data columns (the rest):
  Stored in HDFS files

 Support for most common data types
 Support for pluggable serialization

Monday, August 23, 2010



62

Hive QL feature summary
 Basic SQL

 FROM subqueries
 JOIN (only equi-joins)
 Multi GROUP BY
 Multi-table insert
 Sampling

 Extensibility
 Pluggable MapReduce scripts
 User Defined Functions
 User Defined Types
 SerDe (serializer / deserializer)
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Outline
 Introduction
 MapReduce & distributed storage
 Hadoop

HBase
Pig
Cascading
Hive

 Summary
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Recap
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Recap
 Scalable: all
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Recap
 Scalable: all
 High(-er) level: all except MR
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Recap
 Scalable: all
 High(-er) level: all except MR
 Existing language: MR, Cascading
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Recap
 Scalable: all
 High(-er) level: all except MR
 Existing language: MR, Cascading
 “Schemas”:  HBase, Pig, Hive, (Casc.)

Pluggable data types: all
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Recap
 Scalable: all
 High(-er) level: all except MR
 Existing language: MR, Cascading
 “Schemas”:  HBase, Pig, Hive, (Casc.)

Pluggable data types: all
 Easy transition: Hive, (Pig)
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Related projects
Higher level—computation:
 Dryad & DryadLINQ (Microsoft)  [EuroSys 2007]
 Sawzall (Google)  [Sci Prog Journal 2005]

Higher level—storage:
 Bigtable [OSDI 2006] / Hypertable

Lower level:
 Kosmos Filesystem (Kosmix)
 VSN (Parascale)
 EC2 / S3 (Amazon)
 Ceph / Lustre / PanFS

 Sector / Sphere (http://sector.sf.net/)
 …
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Summary
MapReduce:
 Simplified parallel programming model
Hadoop:
 Built from ground-up for:

Scalability
Fault-tolerance
Clusters of commodity hardware

 Growing collection of components and 
extensions (HBase, Pig, Hive, etc)
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Tutorial overview
 Part 1 (Spiros): Basic concepts & tools

 MapReduce & distributed storage
 Hadoop / HBase / Pig / Cascading / Hive

 Part 2 (Jimeng): Algorithms
 Information retrieval
 Graph algorithms
 Clustering (k-means)
 Classification (k-NN, naïve Bayes)

 Part 3 (Rong): Applications
 Text processing
 Data warehousing
 Machine learning

NEXT:
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