DivRank: Interplay of Prestige and Diversity in Information Networks

Qiaozhu Mei^{1,2}, Jian Guo³, Dragomir Radev^{1,2}

^{1.}School of Information

^{2.}Computer Science and Engineering

3. Department of Statistics
University of Michigan

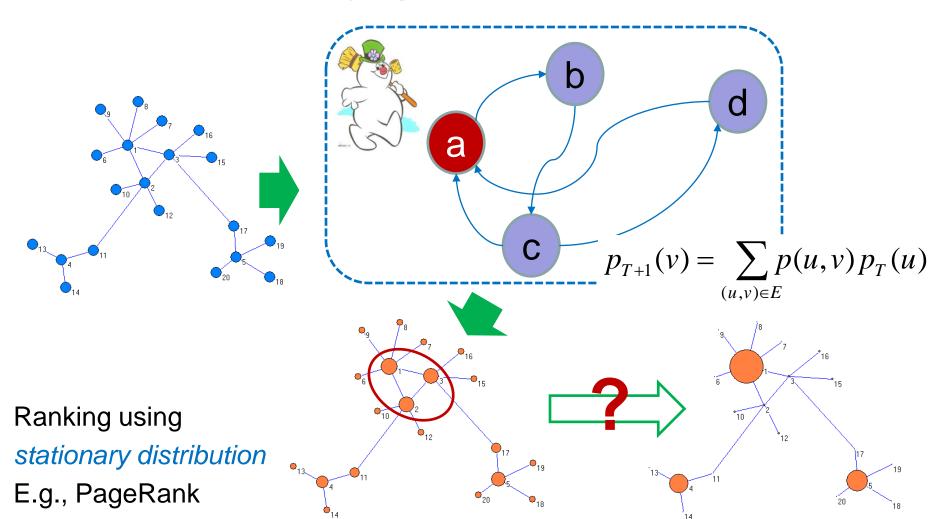
Diversity in Ranking

HOGG DW, 2001_UARTRONZIO1; ASTRONZIO1; AST

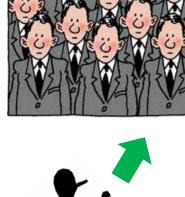
Ranking papers, people, web pages, movies, restaurants...

Web search; ads; recommender systems ...

Network based ranking – centrality/prestige

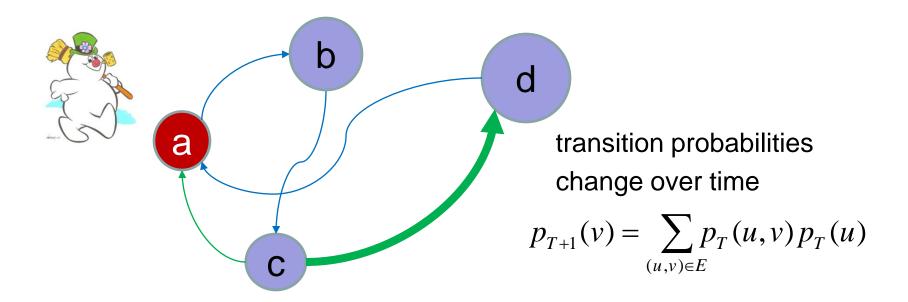


Ranking by Random Walks



Reinforcements in Random Walks

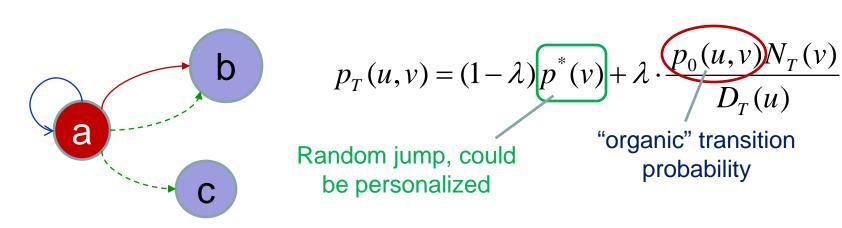
- Random walks are not random rich gets richer;
 - e.g., civilization/immigration big cities attract larger population;
 - Tourism busy restaurants attract more visitors;



Source - http://www.resettlementagency.co.uk/modern-world-migration/

Vertex-Reinforced Random Walk

(Pemantle 92)


Reinforced random walk: transition probability is reinforced by the weight (number of visits) of the target state

$$p_T(u,v) \propto N_T(v)$$

DivRank

A smoothed version of Vertex-reinforced Random Walk

- Adding self-links;
- Efficient approximations: use $E[N_T(v)]$ to approximate $N_T(v)$

Cumulative DivRank:

$$E[N_T(v)] \propto \sum_{t=0}^{T} p_t(v)$$

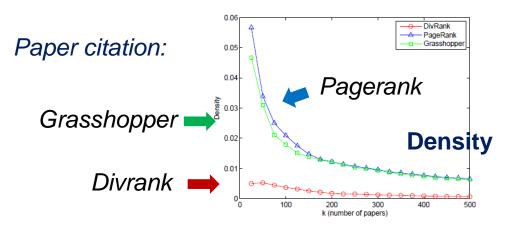
Pointwise DivRank:

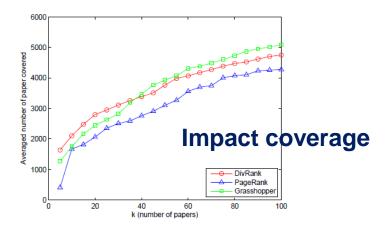
$$E[N_T(v)] \propto p_T(v)$$

Experiments

Three applications

- Ranking movie actors (in co-star network)
- Ranking authors/papers (in author/paper-citation network)
- Text summarization (ranking sentences)


Evaluation metrics:


- diversity: density of subgraph; country coverage (actors)
- quality: h-index (authors); # citation (papers);
- quality + diversity: movie coverage (actors); impact coverage (papers); ROUGE (text summarization)

Results

Divrank >> Grasshopper/MMR >> Pagerank

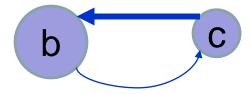
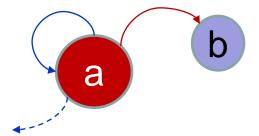

Text Summarization:

Table 1: Results on DUC04 Task-2.


Method	Training		Testing	
	R-1	95% C.I.	R-1	95% C.I.
LR	0.359	[0.337, 0.381]	0.343	[0.318, 0.366]
PPR	0.378	[0.356, 0.398]	0.368	[0.350, 0.385]
MMR	0.363	[0.347, 0.379]	0.343	[0.318, 0.366]
$_{ m GH}$	0.380	[0.360, 0.397]	0.356	[0.333, 0.378]
DR	0.387	[0.367, 0.404]	0.379	[0.366, 0.394]
CDR	0.384	[0.365, 0.401]	0.362	[0.342, 0.378]

Why Does it Work?

Rich gets richer

- Related to Polya's urn and preferential attachment
- Compete for resource in neighborhood

Stay here or go to neighbors?

- Prestigious node absorbs weights of its neighbors
- An optimization explanation

Summary

- DivRank Prestige/Centrality + Diversity
- Mathematical foundation: vertex-reinforced random walk
- Connections:
 - Polya's Urn
 - Preferential Attachments
 - Word burstiness
- Why it works?
 - Rich-gets-richer
 - Local resource competition
- Future work: Query dependent DivRank;

Thanks!

