Online Discovery and Maintenance of Time Series Motifs

Abdullah Mueen Eamonn Keogh University of California, Riverside

Time Series Motifs

• Repeated pattern in a time series

- Utility:
 - Activity/Event discovery
 - Summarization
 - Classification
- Application
 - Data Center Chiller Management (Patnaik, et al. KDD 09)
 - Designing Smart Cane for Elders (Vahdatpour, et al. IJCAI 09)

Ē

Online Time Series Motifs

- Streaming time series
- Sliding window of the recent history
 - What minute long trace repeated in the last hour?

Problem Formulation

Discovery

Maintenance

time:1001 time:1002 time:1003 time:1004 time:1005

Challenge

- A subsequence is a high dimensional point
 The dynamic closest pair of points problem
- Closest pair may change upon every update
- Naïve approach: Do quadratic comparisons.

Our Approach

- Goal: Algorithm with Linear update time
- Previous method for dynamic closest pair (Eppstein,00)
 - A matrix of all-pair distances is maintained
 - O(w²) space required
 - Quad-tree is used to update the matrix
- Maintain a set of neighbors and reverse neighbors for all points
- We do it in $O(w\sqrt{w})$ space

Outline

RIVERSITY OF CAL

DE

- Methods
- Evaluation
- Extensions
- Case Studies
- Conclusion

Maintaining Motif

- Smallest nearest neighbor → Closest pair
- Upon insertion
 - Find the nearest neighbor; Needs O(w) comparisons.
- Upon deletion
 - Find the next NN of all the reverse NN

Ē

Data Structure

Observations

While inserting

- Updating NN of old points is not necessary
- A point can be removed from the neighbor list if it violates the temporal order

Ē

Evaluation

- Up to 8x speedup from general dynamic closest pair
- **Stable space cost** per point with increasing window size

Outline

- Methods
- Evaluation
- Extensions
- Case Studies
- Conclusion

Extension

- Multidimensional Motif
 - Maintain motif in Multiple Synchronous time series
 - Points in one series can have neighbors in others
- Arbitrary Data Rate
 - Load shedding: Skip points if can't handle

Case Study 1: Online Compression

- Replace all the occurrences of a motif by a pointer to that motif.
- For signals with regular repetitions
 - Higher compression rate with less error.

Case Study 2: Closing The Loop

- Check if a robot closed a loop
- Convert the stream of video frames to stream of color histograms.
- Most similar color histograms are good candidates for loop detection.

Conclusion

- First attempt to maintain time series motif online
 - Maintains minutes long repetition in hours long sliding window
- Linear update time with less space cost than quad-tree based method

 $-O(w\sqrt{w}) Vs O(w^2)$

• Faster than general dynamic closest pair solution

Code and Data: http://www.cs.ucr.edu/~mueen/OnlineMotif

