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Time Series Motifs

• Repeated pattern in a time series

• Utility:
– Activity/Event discovery

– Summarization

– Classification

• Application
– Data Center Chiller Management (Patnaik, et al. KDD 09)
– Designing Smart Cane for Elders (Vahdatpour, et al. IJCAI 09)
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Online Time Series Motifs

• Streaming time series

• Sliding window of the recent history
– What minute long trace repeated in the last hour?

Presenter
Presentation Notes
Measurements are generated continuously and thus should be processed continuously.



Problem Formulation
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Challenge

• A subsequence is a high dimensional point
– The dynamic closest pair of points problem

• Closest pair may change upon every update

• Naïve approach: Do quadratic comparisons.
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Presentation Notes
Therefore, the only way to reduce computation is to cache some computation from every update to reduce computation in the later updates.



Our Approach

• Goal: Algorithm with Linear update time

• Previous method for dynamic closest pair 
(Eppstein,00)  

– A matrix of all-pair distances is maintained
• O(w2) space required

– Quad-tree is used to update the matrix

• Maintain a set of neighbors and reverse 
neighbors for all points

• We do it in O(        ) spaceww
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• Methods
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Maintaining Motif

• Smallest nearest neighbor → Closest pair

• Upon insertion
– Find the nearest neighbor; Needs O(w) comparisons.

• Upon deletion
– Find the next NN of all the reverse NN
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Presentation Notes
We made our observations as follows. The smallest nearest neighbor distance is the closest pair distance. So if we can have the nearest neighbor of all the points then it takes linear time to find the Motif pair. Upon updates a points nearest neighbor can be changed is two ways. Either the newly inserted point becomes its nearest neighbor or the old nearest neighbor is deleted and therefore the next in the neighbor list will become the nearest neighbor. Therefore, if we keep a list of neighbors for every point, we will be able to find the closest pair in linear time. The size of the neighbor list is equal to the window size



Data Structure

1 2 3 4 5 6 7 8 FIFO Sliding window 

N-lists
Neighbors in 

order of distances
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4 8 42 5 2 13
6 1 38 1 8 38
3 5 66 4 6 46
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nodes in R-lists is w
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Presenter
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Here we show the data structure. The sliding window is a FIFO pipe. Every point has a list of neighbors. By exploiting the specific order of insertion and deletion we show in the paper that for a point we don’t need to keep all the points in the N-list. We also show that the sufficient neighbor lists have lengths proportional to sqroot of the window size. Every point also has a list of nodes that need to be updated upon its deletion.  We call it R-list. The total number of nodes in all the R-lists is less than the window size. So the data structure needs O(wrootw) space.



Observations
While inserting
 Updating  NN of old points is not necessary
 A point can be removed from the neighbor list if it 

violates the temporal order

Average
length O(        )w

Presenter
Presentation Notes
We made our observations as follows. The smallest nearest neighbor distance is the closest pair distance. So if we can have the nearest neighbor of all the points then it takes linear time to find the Motif pair. Upon updates a points nearest neighbor can be changed is two ways. Either the newly inserted point becomes its nearest neighbor or the old nearest neighbor is deleted and therefore the next in the neighbor list will become the nearest neighbor. Therefore, if we keep a list of neighbors for every point, we will be able to find the closest pair in linear time. The size of the neighbor list is equal to the window size



Example
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Presentation Notes
As a node travels through the FIFO it loses neighbors from the N-list and gains nodes in the R-list. 



Evaluation
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• Up to from general dynamic closest pair
per point with increasing window size
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We have compared our algorithm to the quickest data structure reported in eppstein’s library of dynamic closest pair algorithms. Its name is FastPair. As mentioned earlier, general dynamic closest pair algorithms assume arbitrary order of insertions and deletions and ours is an important  special case of ordered insertion and deletion. Leveraging off this ordering of updates our algorithm runs up to 8X faster than fastpair. As mentioned previously, it is also space efficient. With increasing window size and motif length the space needed per point grows very slowly.
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Extension
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• Multidimensional Motif
• Maintain motif in Multiple Synchronous time series

• Points in one series can have neighbors in others

• Arbitrary Data Rate
• Load shedding: Skip points if can’t handle
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We can extend our algorithm to deal with slight generalized version of the problem. Our first extension is to handle multidimensional motif. Here we have a set of synchronus time series and want to find the closest pair of subsequences from any one or two of these time series within the sliding window. For this we need d FIFO where d is number of time series. The N-lists and R-lists can now point to other FIFO nodes. Time and space required to maintain the motif increase with a factor of d.
Our next extension is to handle arbitrary data rate. Here the data points can be generated faster than the algorithm can handle. In such situation we resort to load shedding and we empirically show that even if we use small fraction of the data  produced we can generate larger fraction of the motifs.



Case Study 1: Online Compression

• Replace all the occurrences of a motif by a 
pointer to that motif.

• For signals with regular repetitions
– Higher compression rate with less error.
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Our first case study is in Online Compression where the goal is to transmit a stream in compressed format. The idea is to use our algorithm to build a dictionary of motifs by running the algorithm for a certain duration. After that we can replace all occurrences of a motif by a simple index pointing to the position of that motif in the dictionary. For signals with regular repititon we get a very good compression rate and smooth decompression as opposed to existing techniques that use picewise linear approximations.



Case Study 2: Closing The Loop

• Check if a robot closed a loop

• Convert the stream of video frames to stream 
of color histograms.

• Most similar color histograms are good 
candidates for loop detection.
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Conclusion

• First attempt to maintain time series motif 
online
– Maintains minutes long repetition in hours long 

sliding window

• Linear update time with less space cost than 
quad-tree based method

– O(        ) Vs O(w2)

• Faster than general dynamic closest pair 
solution

ww



Thank You

Code and Data: 
http://www.cs.ucr.edu/~mueen/OnlineMotif
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