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CSB
Modelling

Computational Systems Biology (CSB)

Concerned with building models of complex biological pathways,
then validating and analysing those models using a variety of
methods, including time-course simulation

The traditional approach involves working with continuous
deterministic models (e.g.coupled ODEs)

There is increasing evidence that much intra-cellular behaviour
(including gene expression) is intrinsically stochastic, and that
systems cannot be properly understood unless stochastic effects
are incorporated into the models

Stochastic models are harder to build, estimate, validate, analyse
and simulate than deterministic models...
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Modelling

Start with a set of (pseudo-)biochemical reactions

Specify the rate laws and rate parameters of the reactions

Run some stochastic or deterministic computer simulator of the
system dynamics

Straightforward using the Gillespie algorithm. The reverse
problem is trickier – given time course data, and a set of
reactions, can we recover the rates?
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Mass Action Kinetics

Second Order Reaction

Y1 + Y2 −→ Y3

This will occur when a molecule of Y1 collides with a molecule of Y2

For a small, fixed volume (V ) and assuming thermal equilibrium,
the hazard of molecules colliding is constant (Gillespie, 1992).

We assume the law of mass action such that the hazard of the
above reaction ∝ Y1Y2.
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Mass Action Kinetics (2)

Generically

k species and r reactions with a typical reaction

Ri : ui1Y1 + . . . + uik Yk −→ vi1Y1 + . . . + vik Yk

Each Ri has a stochastic rate constant, ci and hazard hi(Y , ci)
where Y = (Y1, . . . , Yk )′ is the current state of the system.

Every system has a r × k net effect matrix, A = (aij) where

aij = vij − uij
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Markov Process Models

Traditionally based on solving the “chemical master equation” for

P(Y ; t) = P (Y1, . . . , Yk molecules in V at time t)

Derive the M-eq. by noting that

P(Y ; t +∆t) =

r
X

i=1

hi(Y −A′
i , ci)P(Y −A′

i ; t)∆t +

(

1 −
r

X

i=1

hi(Y , ci)∆t

)

P(Y ; t)

which leads to the M-eq.

∂

∂t
P(Y ; t) =

r∑

i=1

{hi(Y − A′

i , ci)P(Y − A′

i ; t) − hi(Y , ci)P(Y ; t)}

However
M-eq is only tractable for a handful of cases
Therefore stochastic models are typically examined using the
Gillespie algorithm
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The Gillespie algorithm

1 Initialise the system at t = 0 with rate constants c1, c2, . . . , cr and initial
numbers of molecules for each species, Y1, Y2, . . . , Yk .

2 Calculate h0(Y , c) ≡
Pr

i=1 hi(Y , ci), the combined reaction hazard.

3 Simulate time to next event, t ′ ∼ Exp(h0(Y , c)) random quantity, and put
t := t + t ′.

4 Simulate the reaction index, j , as a discrete random quantity with
probabilities hi(Y , ci) / h0(Y , c), i = 1, 2, . . . , r .

5 Update Y according to reaction j . That is, put Y := Y + A′
j , where Aj

denotes the j th row of the net effect matrix A.

6 Output Y and t .

7 If t < Tmax , return to step 2.
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Example: Lotka-Volterra

Reactions

R1 : Y1 −→ 2Y1 Prey reproduction
R2 : Y1 + Y2 −→ 2Y2 Predator eats prey
R3 : Y2 −→ ∅ Predator dies

If the discreteness and stochasticity are ignored, then it is
straightforward to deduce the mass-action ODE system:

Lotka-Volterra: ODE Model

dY1

dt
= c1Y1 − c2Y1Y2

dY2

dt
= c2Y1Y2 − c3Y2

Analytic solutions are rarely available, but good numerical solvers can
generate time course behaviour
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The Lotka-Volterra model
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Key differences

Deterministic solution is exactly periodic with perfectly repeating
oscillations, carrying on indefinitely

Stochastic solution oscillates, but in a random, unpredictable way

Stochastic solution will end in disaster! Either prey or predator
numbers will hit zero...

Either way, predators will end up extinct, so expected number of
predators will tend to zero — qualitatively different to the
deterministic solution

So, in general the deterministic solution does not provide reliable
information about either the stochastic process or its average
behaviour
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Fully Bayesian inference

In principle it is possible to carry out rigorous statistical inference
for the parameters of the stochastic process model

Techniques for exact inference for the true discrete model (Boys,
Wilkinson, Kirkwood 2004) do not scale well to problems of
realistic size and complexity

True process is discrete and stochastic — stochasticity is vital —
what about discreteness?

Apply the Fokker-Planck equation to the Master equation for the
true process to obtain an SDE known as the Chemical Langevin
Equation (CLE)
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The Stochastic-Kinetic Diffusion Approximation

Chemical Langevin Equation (It ô SDE)

dYt = A′h(Yt , c)dt + [A′ diag{h(Yt , c)}A]
1/2 dWt

Fairly general class of non-linear multivariate SDEs

The net effect matrix A is typically rank-degenerate, which
complicates things slightly

A is known and Y (or a subset) is observed at discrete times
(subject to error)

Inference is for c (the vector of rate constants parameterising the
reaction rate vector, h(·, ·))
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Inference for Diffusions

Set µ(Yt , c) = A′h(Yt , c), β(Yt , c) = A′ diag{h(Yt , c)}A

Need to consider the general problem of inferring parameters c
governing

dYt = µ(Yt , c)dt + β
1
2 (Yt , c)dWt

using observations (that may be incomplete and subject to error)
at discrete times
Problem: For µ and β nonlinear, analytic solutions rarely
available

Can’t obtain underlying transition densities!
Likelihood inference non-trivial
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Bayesian Imputation approach

Work with the Euler discretisation

∆Yt = µ(Yt , c)∆t + β
1
2 (Yt , c)∆Wt , ∆Wt ∼ Nd (0, I∆t)

Inter-obs. time, ∆∗, usually too big to use as ∆t !

Set ∆t = ∆∗/m, choose m large so that ∆t is small

Gives m − 1 latent values between every pair of obs

Augmented data in matrix form,

Ŷ =
`

yt0 Yt1 · · · Ytm−1 ytm Ytm+1 · · · · · · Ytn−1 ytn

´

For data, Dn, formulate joint posterior for c and missing values Ŷ\{Dn}

π(c, Ŷ\{Dn}|Dn) ∝ π(c) ×
n−1
Y

i=0

π(Yi+1|Yi , c)

Integrate over our uncertainty for Ŷ using MCMC
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Gibbs Sampling

Could sample π(c, Ŷ\{Dn}|Dn) by alternating between

draws of missing data (e.g. one column at a time) conditional on c and
Dn (Metropolis step)

draws of c conditional on augmented data, Ŷ (Metropolis step)

However, if the diffusion coefficient is not free of c, the algorithm is reducible

For m → ∞, there is an infinite amount of information in the augmented
sample Ŷ

Solution (due to Roberts & Stramer, ’01): Find an analytic transformation of
the diffusion to constant volatility

Typically impossible to implement for interesting nonlinear diffusions
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Irreducible Global MCMC Schemes

Idea (Chib, Pitt & Shephard, ’06). Gibbs sampler: Draw from c|Ŵ rather
than c|Ŷ thereby breaking the problematic dependence. Target:

π(c|Ŵ ) ∝ π(c) π(g(Ŵ , c)|c) × Jacobian

Conditional on c, there is a one-to-one relationship between Ŷ and Ŵ –
the skeleton of the driving B.M.

Numerically map between the diffusion sample paths and the
corresponding sample paths of the driving Brownian motion, for example
using the Euler-Maruyama discretisation

∆Yt = µ(Yt , c)∆t + β
1
2 (Yt , c)∆Wt

⇒ ∆Wt = β− 1
2 (Yt , c)[∆Yt − µ(Yt , c)∆t ]

Problem: unless the diffusion is observed very indirectly, changing the
parameters causes the sample paths to “miss” the data points,
rendering it impractical
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Modified Innovation Scheme

(Golightly & Wilkinson, ’06): Use the modified diffusion bridge MDB
construct of Durham and Gallant ’02 as a template for building sample
paths, and use the Wiener processes driving the MDB as our sampler
components

Thinking just about a discretisation of [0, 1] and the fully observed case,
we can map back and forth using the deterministic transformations

∆Yt =
y1 − Yt

1 − t
∆t +

„

1 − t − ∆t
1 − t

β(Yt , c)

« 1
2

∆Wt

⇒ ∆Wt =

„

1 − t
1 − t − ∆t

«

β− 1
2 (Yt , c)

»

∆Yt −
y1 − Yt

1 − t
∆t

–

Crucially, there is no problem with failing to “hit” data points after
transforming back to the observed diffusion
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Algorithm

1 Initialise parameters c, and latent data Ŷ\{Dn}

2 For times t0, tm, . . . , tn−m update latent data in blocks of size m − 1 using
the MDB, and accept/reject with a M-H step

3 Map from Ŷ to Ŵ using the MDB transformation on each interval

4 Propose a new parameter c?. Using c? with fixed Ŵ , deterministically
construct the corresponding sample path Ŷ ?, and accept/reject the pair
jointly with a M-H step

5 Output state and return to step 2

Generalisations to noisy/imperfect observations are straightforward
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Acceptance probabilities

Let Ym denote all latent values in (tj , tj+m)

The acceptance probability for a single interval path update on (tj , tj+m)
takes the form

A =
π(Y∗

m|c, yj , yj+m)

π(Ym|c, yj , yj+m)
×

q(Ym|c, yj , yj+m)

q(Y∗
m|c, yj , yj+m)

The acceptance probability for a proposed update to c∗ takes the form

A =
π(c∗)

π(c)
×

f (c|c∗)

f (c∗|c)
×

π(Ŷ∗|c∗)

q(Ŷ∗|c∗)

π(Ŷ |c)

q(Ŷ |c)
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Toy Application: Prokaryotic Auto-Regulation

Reaction list:

R1 : DNA + P2 −→ DNA ·P2 Repression
R2 : DNA ·P2 −→ DNA + P2

R3 : DNA −→ DNA + RNA Transcription
R4 : RNA −→ RNA + P Translation
R5 : 2P −→ P2 Dimerisation
R6 : P2 −→ 2P
R7 : RNA −→ ∅ Degradation
R8 : P −→ ∅

5 species DNA, DNA ·P2, RNA, P, P2 and 8 reactions with rate constants
c = (c1, . . . , c8)

′

Note that DNA and DNA ·P2 are deterministically related

Induces a 4-dimensional diffusion process parameterised by c
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Simulation Study

50 obs simulated using the Gillespie algorithm
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Results, m = 10, Gibbs Sampler
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Results, m = 10, Innovation Scheme
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Results, m = 10, Innovation Scheme
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Results, m = 10, Innovation Scheme

c1 c2 c3 c4 c5 c6 c7 c8

True Values
0.1 0.7 0.35 0.2 0.1 0.9 0.3 0.1

Observe (DNA, RNA, P, P2)
Mean 0.087 0.655 0.547 0.055 0.078 0.758 0.437 0.038
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Results, m = 10, Innovation Scheme

c1 c2 c3 c4 c5 c6 c7 c8

True Values
0.1 0.7 0.35 0.2 0.1 0.9 0.3 0.1

Observe (DNA, RNA, P, P2)
Mean 0.087 0.655 0.547 0.055 0.078 0.758 0.437 0.038

Observe (RNA, P, P2)
Mean 0.061 0.451 0.497 0.024 0.072 0.702 0.393 0.020

Andrew Golightly — Manchester, March 2007 Bayesian Inference for Systems Biology Models



Introduction
Stochastic Kinetic Models

Inferring rate constants
Conclusions

Diffusion Approximation
Naive Sampling Strategies
Innovation Scheme
Application

Results, m = 10, Innovation Scheme

c1 c2 c3 c4 c5 c6 c7 c8

True Values
0.1 0.7 0.35 0.2 0.1 0.9 0.3 0.1

Observe (DNA, RNA, P, P2)
Mean 0.087 0.655 0.547 0.055 0.078 0.758 0.437 0.038

Observe (RNA, P, P2)
Mean 0.061 0.451 0.497 0.024 0.072 0.702 0.393 0.020

Observe (RNA)
Mean 0.047 0.262 0.540 0.049 0.023 0.153 0.461 0.034
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Summary

Systems Biology and post-genomics are full of interesting (hard)
statistical problems

It appears promising to consider the problem of understanding
biochemical network dynamics in terms of inference for the Chemical
Langevin Equation

Inference for arbitrary multivariate diffusions observed partially,
discretely and with error is non-trivial

It is possible, however, to implement global MCMC schemes which do
not break down for large amounts of augmentation
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