Bayesian Inference for Systems Biology Models via a Diffusion Approximation

Andrew Golightly

School of Mathematics & Statistics

Darren Wilkinson

School of Mathematics & Statistics

and Centre for Integrated Systems Biology of Ageing and Nutrition Newcastle University, UK

> Parameter Estimation in Systems Biology, University of Manchester 28-29th March 2007

Overview

- Introduction
- Markov process models of biochemical network dynamics
- A diffusion approximation
 - Estimating diffusion parameters
- Application: Toy prokaryotic auto-regulatory network
- Summary & future directions

CSB Modelling

Computational Systems Biology (CSB)

- Concerned with building models of complex biological pathways, then validating and analysing those models using a variety of methods, including time-course simulation
- The traditional approach involves working with continuous deterministic models (e.g.coupled ODEs)
- There is increasing evidence that much intra-cellular behaviour (including gene expression) is intrinsically stochastic, and that systems cannot be properly understood unless stochastic effects are incorporated into the models
- Stochastic models are harder to build, estimate, validate, analyse and simulate than deterministic models...

< 同 > < 三 > < 三 >

CSB Modelling

Modelling

- Start with a set of (pseudo-)biochemical reactions
- Specify the rate laws and rate parameters of the reactions
- Run some stochastic or deterministic computer simulator of the system dynamics
- Straightforward using the Gillespie algorithm. The reverse problem is trickier – given time course data, and a set of reactions, can we recover the rates?

周 ト イ ヨ ト イ ヨ

Stochastic Kinetics Chemical Master Equation Simulation Lotka-Volterra

Mass Action Kinetics

Second Order Reaction

$$Y_1 + Y_2 \longrightarrow Y_3$$

This will occur when a molecule of Y₁ collides with a molecule of Y₂

- For a small, fixed volume (V) and assuming thermal equilibrium, the hazard of molecules colliding is constant (Gillespie, 1992).
- We assume the law of mass action such that the hazard of the above reaction \propto Y1 Y2.

Stochastic Kinetics Chemical Master Equation Simulation Lotka-Volterra

Mass Action Kinetics (2)

Generically

k species and r reactions with a typical reaction

$$R_i: \quad u_{i1} Y_1 + \ldots + u_{ik} Y_k \quad \longrightarrow \quad v_{i1} Y_1 + \ldots + v_{ik} Y_k$$

- Each R_i has a stochastic rate constant, c_i and hazard $h_i(Y, c_i)$ where $Y = (Y_1, ..., Y_k)'$ is the current state of the system.
- Every system has a $r \times k$ net effect matrix, $A = (a_{ij})$ where

$$a_{ij} = v_{ij} - u_{ij}$$

Stochastic Kinetics Chemical Master Equation Simulation Lotka-Volterra

Markov Process Models

Traditionally based on solving the "chemical master equation" for

$$P(Y; t) = P(Y_1, ..., Y_k \text{ molecules in } V \text{ at time } t)$$

Derive the M-eq. by noting that

$$P(\mathbf{Y}; t + \Delta t) = \sum_{i=1}^{r} h_i (\mathbf{Y} - \mathbf{A}'_i, \mathbf{c}_i) P(\mathbf{Y} - \mathbf{A}'_i; t) \Delta t + \left\{ 1 - \sum_{i=1}^{r} h_i (\mathbf{Y}, \mathbf{c}_i) \Delta t \right\} P(\mathbf{Y}; t)$$

which leads to the M-eq.

$$\frac{\partial}{\partial t} \mathbf{P}(\mathbf{Y}; t) = \sum_{i=1}^{r} \{ h_i (\mathbf{Y} - \mathbf{A}'_i, \mathbf{c}_i) \mathbf{P}(\mathbf{Y} - \mathbf{A}'_i; t) - h_i (\mathbf{Y}, \mathbf{c}_i) \mathbf{P}(\mathbf{Y}; t) \}$$

However

- M-eq is only tractable for a handful of cases
- Therefore stochastic models are typically examined using the Gillespie algorithm

Stochastic Kinetics Chemical Master Equation Simulation Lotka-Volterra

The Gillespie algorithm

- Initialise the system at t = 0 with rate constants $c_1, c_2, ..., c_r$ and initial numbers of molecules for each species, $Y_1, Y_2, ..., Y_k$.
- 2 Calculate $h_0(Y, c) \equiv \sum_{i=1}^r h_i(Y, c_i)$, the combined reaction hazard.
- Simulate time to next event, t' ~ Exp(h₀(Y, c)) random quantity, and put t := t + t'.
- Simulate the reaction index, *j*, as a discrete random quantity with probabilities $h_i(Y, c_i) / h_0(Y, c)$, i = 1, 2, ..., r.
- Update Y according to reaction *j*. That is, put $Y := Y + A'_j$, where A_j denotes the *j*th row of the net effect matrix A.
- Output Y and t.
- If $t < T_{max}$, return to step 2.

Stochastic Kinetics Chemical Master Equation Simulation Lotka-Volterra

Example: Lotka-Volterra

Reactions

- If the discreteness and stochasticity are ignored, then it is straightforward to deduce the mass-action ODE system:

Lotka-Volterra: ODE Model

$$\frac{dY_1}{dt} = c_1 Y_1 - c_2 Y_1 Y_2$$

$$\frac{dY_2}{dt} = c_2 Y_1 Y_2 - c_3 Y_2$$

 Analytic solutions are rarely available, but good numerical solvers can generate time course behaviour

Stochastic Kinetics Chemical Master Equation Simulation Lotka-Volterra

The Lotka-Volterra model

з

Stochastic Kinetics Chemical Master Equation Simulation Lotka-Volterra

The Lotka-Volterra model

з

Stochastic Kinetics Chemical Master Equation Simulation Lotka-Volterra

The Lotka-Volterra model

< 17 ▶

→

Stochastic Kinetics Chemical Master Equation Simulation Lotka-Volterra

The Lotka-Volterra model

< D > < A > < B >

Stochastic Kinetics Chemical Master Equation Simulation Lotka-Volterra

The Lotka-Volterra model

• □ > • □ > • Ξ >

Stochastic Kinetics Chemical Master Equation Simulation Lotka-Volterra

The Lotka-Volterra model

• □ > • □ > • Ξ >

Stochastic Kinetics Chemical Master Equation Simulation Lotka-Volterra

Key differences

- Deterministic solution is exactly periodic with perfectly repeating oscillations, carrying on indefinitely
- Stochastic solution oscillates, but in a random, unpredictable way
- Stochastic solution will end in disaster! Either prey or predator numbers will hit zero...
- Either way, predators will end up extinct, so expected number of predators will tend to zero — qualitatively different to the deterministic solution
- So, in general the deterministic solution does not provide reliable information about either the stochastic process or its average behaviour

< ロ > < 同 > < 回 > < 回 > < 回 > <

Diffusion Approximation Naive Sampling Strategies Innovation Scheme Application

Fully Bayesian inference

- In principle it is possible to carry out rigorous statistical inference for the parameters of the stochastic process model
- Techniques for exact inference for the true discrete model (Boys, Wilkinson, Kirkwood 2004) do not scale well to problems of realistic size and complexity
- True process is discrete and stochastic stochasticity is vital what about discreteness?
- Apply the Fokker-Planck equation to the Master equation for the true process to obtain an SDE known as the Chemical Langevin Equation (CLE)

< ロ > < 同 > < 回 > < 回 > < 回 > <

Diffusion Approximation Naive Sampling Strategies Innovation Scheme Application

The Stochastic-Kinetic Diffusion Approximation

Chemical Langevin Equation (Itô SDE)

 $dY_t = A'h(Y_t, c)dt + [A' diag\{h(Y_t, c)\}A]^{1/2} dW_t$

- Fairly general class of non-linear multivariate SDEs
- The net effect matrix A is typically rank-degenerate, which complicates things slightly
- A is known and Y (or a subset) is observed at discrete times (subject to error)
- Inference is for *c* (the vector of rate constants parameterising the reaction rate vector, *h*(·, ·))

Diffusion Approximation Naive Sampling Strategies Innovation Scheme Application

Inference for Diffusions

- Set $\mu(\mathbf{Y}_t, \mathbf{c}) = A' h(\mathbf{Y}_t, \mathbf{c}), \ \beta(\mathbf{Y}_t, \mathbf{c}) = A' \operatorname{diag}\{h(\mathbf{Y}_t, \mathbf{c})\}A$
- Need to consider the general problem of inferring parameters *c* governing

$$dY_t = \mu(Y_t, c)dt + \beta^{\frac{1}{2}}(Y_t, c)dW_t$$

using observations (that may be incomplete and subject to error) at discrete times

- Problem: For μ and β nonlinear, analytic solutions rarely available
 - Can't obtain underlying transition densities!
 - Likelihood inference non-trivial

Diffusion Approximation Naive Sampling Strategies Innovation Scheme Application

Bayesian Imputation approach

Work with the Euler discretisation

 $\Delta Y_t = \mu(Y_t, c) \Delta t + \beta^{\frac{1}{2}}(Y_t, c) \Delta W_t, \qquad \Delta W_t \sim N_d(0, I \Delta t)$

- Inter-obs. time, Δ^* , usually too big to use as $\Delta t!$
- Set $\Delta t = \Delta^* / m$, choose *m* large so that Δt is small
- Gives m 1 latent values between every pair of obs
- Augmented data in matrix form,

$$\hat{\mathbf{Y}} = \left(\begin{array}{cccc} \mathbf{y}_{t_0} & \mathbf{Y}_{t_1} & \cdots & \mathbf{Y}_{t_{m-1}} & \mathbf{y}_{t_m} & \mathbf{Y}_{t_{m+1}} & \cdots & \mathbf{Y}_{t_{n-1}} & \mathbf{y}_{t_n} \end{array}\right)$$

• For data, D_n , formulate joint posterior for c and missing values $\hat{Y} \setminus \{D_n\}$

$$\pi(\boldsymbol{c}, \hat{\boldsymbol{Y}} \setminus \{\boldsymbol{D}_n\} | \boldsymbol{D}_n) \propto \pi(\boldsymbol{c}) imes \prod_{i=0}^{n-1} \pi(\boldsymbol{Y}_{i+1} | \boldsymbol{Y}_i, \boldsymbol{c})$$

4月 2 4 5 2 4 5 2 5 1

Integrate over our uncertainty for Ŷ using MCMC

Diffusion Approximation Naive Sampling Strategies Innovation Scheme Application

Gibbs Sampling

Could sample $\pi(c, \hat{Y} \setminus \{D_n\} | D_n)$ by alternating between

- draws of missing data (e.g. one column at a time) conditional on c and D_n (Metropolis step)
- draws of c conditional on augmented data, \hat{Y} (Metropolis step)

However, if the diffusion coefficient is not free of *c*, the algorithm is *reducible*

• For $m \to \infty,$ there is an infinite amount of information in the augmented sample \hat{Y}

Solution (due to Roberts & Stramer, '01): Find an analytic transformation of the diffusion to constant volatility

• Typically impossible to implement for interesting nonlinear diffusions

< ロ > < 同 > < 回 > < 回 > < 回 > <

Diffusion Approximation Naive Sampling Strategies Innovation Scheme Application

Irreducible Global MCMC Schemes

Idea (Chib, Pitt & Shephard, '06). Gibbs sampler: Draw from c|Ŵ rather than c|Ŷ thereby breaking the problematic dependence. Target:

$$\pi(m{c}|\hat{W}) \propto \pi(m{c}) \pi(m{g}(\hat{W},m{c})|m{c}) imes$$
 Jacobian

- Conditional on *c*, there is a one-to-one relationship between \hat{Y} and \hat{W} the skeleton of the driving B.M.
- Numerically map between the diffusion sample paths and the corresponding sample paths of the driving Brownian motion, for example using the Euler-Maruyama discretisation

$$\Delta \mathbf{Y}_t = \mu(\mathbf{Y}_t, \mathbf{c}) \Delta t + \beta^{\frac{1}{2}}(\mathbf{Y}_t, \mathbf{c}) \Delta W_t$$
$$\Rightarrow \Delta W_t = \beta^{-\frac{1}{2}}(\mathbf{Y}_t, \mathbf{c}) [\Delta \mathbf{Y}_t - \mu(\mathbf{Y}_t, \mathbf{c}) \Delta t]$$

• Problem: unless the diffusion is observed very indirectly, changing the parameters causes the sample paths to "miss" the data points, rendering it impractical

Diffusion Approximation Naive Sampling Strategies Innovation Scheme Application

Modified Innovation Scheme

- (Golightly & Wilkinson, '06): Use the modified diffusion bridge MDB construct of Durham and Gallant '02 as a template for building sample paths, and use the Wiener processes driving the MDB as our sampler components
- Thinking just about a discretisation of [0, 1] and the fully observed case, we can map back and forth using the deterministic transformations

$$\Delta \mathbf{Y}_t = \frac{\mathbf{y}_1 - \mathbf{Y}_t}{1 - t} \Delta t + \left(\frac{1 - t - \Delta t}{1 - t}\beta(\mathbf{Y}_t, \mathbf{c})\right)^{\frac{1}{2}} \Delta W_t$$
$$\Rightarrow \Delta W_t = \left(\frac{1 - t}{1 - t - \Delta t}\right) \beta^{-\frac{1}{2}}(\mathbf{Y}_t, \mathbf{c}) \left[\Delta \mathbf{Y}_t - \frac{\mathbf{y}_1 - \mathbf{Y}_t}{1 - t} \Delta t\right]$$

 Crucially, there is no problem with failing to "hit" data points after transforming back to the observed diffusion

< ロ > < 同 > < 回 > < 回 > < 回 > <

Diffusion Approximation Naive Sampling Strategies Innovation Scheme Application

Algorithm

- Initialise parameters c, and latent data $\hat{Y} \setminus \{D_n\}$
- For times t₀, t_m,..., t_{n-m} update latent data in blocks of size m 1 using the MDB, and accept/reject with a M-H step
- (a) Map from \hat{Y} to \hat{W} using the MDB transformation on each interval
- Propose a new parameter c*. Using c* with fixed Ŵ, deterministically construct the corresponding sample path Ŷ*, and accept/reject the pair jointly with a M-H step
- Output state and return to step 2

Generalisations to noisy/imperfect observations are straightforward

Diffusion Approximation Naive Sampling Strategies Innovation Scheme Application

Acceptance probabilities

- Let \mathbf{Y}_m denote all latent values in (t_j, t_{j+m})
- The acceptance probability for a single interval path update on (t_j, t_{j+m}) takes the form

$$\mathsf{A} = \frac{\pi(\mathbf{Y}_m^*|\boldsymbol{c}, y_j, y_{j+m})}{\pi(\mathbf{Y}_m|\boldsymbol{c}, y_j, y_{j+m})} \times \frac{q(\mathbf{Y}_m|\boldsymbol{c}, y_j, y_{j+m})}{q(\mathbf{Y}_m^*|\boldsymbol{c}, y_j, y_{j+m})}$$

The acceptance probability for a proposed update to c* takes the form

$${m A}=rac{\pi({m c}^*)}{\pi({m c})} imesrac{f({m c}|{m c}^*)}{f({m c}^*|{m c})} imesrac{rac{\pi(\hat{\mathbb Y}^*|{m c}^*)}{q(\hat{\mathbb Y}^*|{m c}^*)}}{rac{\pi(\hat{\mathbb Y}|{m c})}{q(\hat{\mathbb Y}|{m c})}}$$

Diffusion Approximation Naive Sampling Strategies Innovation Scheme Application

Toy Application: Prokaryotic Auto-Regulation

Reaction list:				
<i>R</i> ₁ :	$DNA + P_2$	\longrightarrow	$DNA \cdot P_2$	Repression
R_2 :	$DNA \cdot P_2$	\longrightarrow	$DNA + P_2$	
R ₃ :	DNA	\longrightarrow	DNA + RNA	Transcription
R_4 :	RNA	\longrightarrow	RNA + P	Translation
R 5 :	2P	\longrightarrow	P ₂	Dimerisation
R_{6} :	P ₂	\longrightarrow	2P	
R ₇ :	RNA	\longrightarrow	Ø	Degradation
R ₈ :	Р	\longrightarrow	Ø	

- 5 species DNA, DNA · P₂, RNA, P, P₂ and 8 reactions with rate constants $c = (c_1, \dots, c_8)^{'}$
- Note that DNA and DNA · P₂ are deterministically related
- Induces a 4-dimensional diffusion process parameterised by c

< ロ > < 同 > < 三 > < 三

Diffusion Approximation Naive Sampling Strategies Innovation Scheme Application

Simulation Study

• 50 obs simulated using the Gillespie algorithm

- Rate constants c = (0.1, 0.7, 0.35, 0.2, 0.1, 0.9, 0.3, 0.1)
- Run the innovation scheme to recover these values

Diffusion Approximation Naive Sampling Strategies Innovation Scheme Application

Results, m = 10, **Gibbs Sampler**

Diffusion Approximation Naive Sampling Strategies Innovation Scheme Application

Results, m = 10, Innovation Scheme

Diffusion Approximation Naive Sampling Strategies Innovation Scheme Application

Results, m = 10, Innovation Scheme

Diffusion Approximation Naive Sampling Strategies Innovation Scheme Application

Results, m = 10, Innovation Scheme

	C ₁	C ₂	C 3	C 4	C 5	C 6	C 7	C 8		
True Values										
	0.1	0.7	0.35	0.2	0.1	0.9	0.3	0.1		
Observe (DNA, RNA, P, P ₂)										
Mean	0.087	0.655	0.547	0.055	0.078	0.758	0.437	0.038		

Diffusion Approximation Naive Sampling Strategies Innovation Scheme Application

Results, m = 10, Innovation Scheme

	C ₁	C ₂	C 3	C 4	C 5	C 6	C 7	C 8	
True Values									
	0.1	0.7	0.35	0.2	0.1	0.9	0.3	0.1	
Observe (DNA, RNA, P, P ₂)									
Mean	0.087	0.655	0.547	0.055	0.078	0.758	0.437	0.038	
Observe (RNA, P, P ₂)									
Mean	0.061	0.451	0.497	0.024	0.072	0.702	0.393	0.020	

Diffusion Approximation Naive Sampling Strategies Innovation Scheme Application

Results, m = 10, Innovation Scheme

	C 1	C ₂	C 3	C 4	C 5	C 6	C 7	C 8	
True Values									
	0.1	0.7	0.35	0.2	0.1	0.9	0.3	0.1	
Observe (DNA, RNA, P, P ₂)									
Mean	0.087	0.655	0.547	0.055	0.078	0.758	0.437	0.038	
Observe (RNA, P, P ₂)									
Mean	0.061	0.451	0.497	0.024	0.072	0.702	0.393	0.020	
Observe (RNA)									
Mean	0.047	0.262	0.540	0.049	0.023	0.153	0.461	0.034	

Summary References

Summary

- Systems Biology and post-genomics are full of interesting (hard) statistical problems
- It appears promising to consider the problem of understanding biochemical network dynamics in terms of inference for the Chemical Langevin Equation
- Inference for arbitrary multivariate diffusions observed partially, discretely and with error is non-trivial
- It is possible, however, to implement global MCMC schemes which do not break down for large amounts of augmentation

・ロト ・同ト ・ヨト ・ヨト

Summary References

- Boys, R. J., Wilkinson, D.J. and T.B.L. Kirkwood (2004). Bayesian inference for a discretely observed stochastic kinetic model. In submission.
- Golightly, A. and D. J. Wilkinson (2006). Bayesian sequential inference for stochastic kinetic biochemical network models. *Journal of Computational Biology.* 13(3), 838–851.
- Golightly, A. and D. J. Wilkinson (2006). Bayesian inference for nonlinear multivariate diffusion models observed with error. In submission.

Wilkinson, D. J. (2006). *Stochastic Modelling for Systems Biology*. Chapman & Hall/CRC Press.

Contact details...

email: a.golightly@ncl.ac.uk
www: http://www.mas.ncl.ac.uk/~nag48/

< ロ > < 同 > < 回 > < 回 > < 回 > <