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e A manifold is a “topological space” in which every point has a
neighborhood which resembles Euclidean space, but in which
the global structure may be more complicated
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o

A group ¢ is a set that is endowed with a binary
operation and satisfies the closure, associativ-
ity, identity, and invertibility properties.

Set of integers Z under addition where the
identity is O

Set of integers Z under multiplication where
the identity is 1

A subset of G is called as a subgroup if it sat-
isfies all the group properties.

Set of positive rational numbers @"‘ under mul-
tiplication

Set of negative rational numbers Q—
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o

A non-commutative group is the set of invert-
ible n X n square matrices under matrix multi-
plication: the general linear group GL(n).

The special linear group SL(n), which is the
set of n X n matrices with unit determinant, is
a subgroup.
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o

A topological space is a set S together with a
family of subsets 7 if the empty set ) € 7 and
S € 7, the union and intersection of any family
of sets in 7 lies in 7.

Setsin 7 are called open sets of the topological
space.

Any open set Y € 7 which contains point X € S
is called the neighborhood of the point.

A Hausdorff (separated) space is a topologi-
cal space in which distinct points have disjoint
neighborhoods.

Real numbers constitute a Hausdorff space.
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o

For functions defined on Hausdorff spaces it is
possible to introduce continuity:

As we move towards a point X, the value of
the function gets closer to the value of the
function at the point.

Being ‘close’ to a particular point is determined
by its neighborhood and the continuity of a
function that maps open sets of the topology.

A mapping between two topological spaces is
called continuous if the inverse image of any
open set with respect to the mapping is again
an open set.
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o

A bijective (one-to-one, onto) mapping contin-
uous in both directions is a homeomorphism.

Such mappings preserve the topological prop-
erties of a given space.

Two spaces with a homeomorphism between
them are called homeomorphic, and from a
topological viewpoint, they are the same, e.qg.
a square and a circle are homeomorphic to each
other.

apple orange
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o

A manifold M of dimension d is a Hausdorff

space for which every point has a neighbor-

hood that is homeomorphic to an open subset

U of R4,
In other words, a manifold corresponds to a
topological space which is locally similar to an
Euclidean space.
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For any point X € M, there exists an open /

neighborhood U C M containing the point and

homeomorphism ¢ mapping the neighborhood (C@y
"

ylg

to an open set V C R%, such that ¢ : U — V.
The pair (U, o) is called as a coordinate chart.

An atlas is a family of charts.

A differentiable manifold C* is a topological

manifold equipped with an equivalence class of

atlas whose transition maps are k-times con-

tinuously differentiable.
If all its partial derivatives exist, then it is a
smooth manifold C°°.
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o

It is possible to define the derivatives of the
curves on a differentiable manifold and attach
to every point X a tangent space TY.

A real vector space that intuitively contains
the possible directions in which one can tan-
gentially pass through X.

Dr. Fatih Porikli — April 28, 2010



o

The tangent space can be thought of as the
set of allowed velocities for a point constrained
to move on the manifold. Mathematically, it
IS @ generalization of the idea of a directional
derivative in Euclidean space.

The tangent space is a vector space, thereby
it is closed under addition and scalar multipli-
cation.
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Riemannian Manifolds

Bernhard Riemann
1826-1866
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http://upload.wikimedia.org/wikipedia/commons/8/82/Georg_Friedrich_Bernhard_Riemann.jpeg

muﬁfolds

Riemannian geometry adds further structure to
an analytic manifold by defining an symmetric,
positive definite bilinear form on the tangent
space at each point on the manifold.

A bilinear form on a vector space is a mapping
b from R? to R that is linear.

A bilinear form is positive definite if b(x,y) > 0
with equality occurring if and only if x = 0.

The inner product on any Euclidean space is
an example of a symmetric positive definite

bilinear form.
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Riemannian Manifolds

A Riemannian manifold (M,g) is a differen-
tiable manifold in which each tangent space
has an inner product g metric inducing a norm
for the tangent vectors.

It is possible to define different metrics on the
same manifold to obtain different Riemannian
manifolds.
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Riemannian Manifolds

A geodesic is a smooth curve that locally joins
their points along the shortest path.

The length of the geodesic is defined to be the
Riemannian distance between the two points.
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Riemannian Manifolds

The exponential map, expx : Tx — M, maps
the vector y in the tangent space to the point
on the manifold reached by the geodesic after

unit time expx(y) = 1.

Under the exponential map, the image of the
zero tangent vector is the point itself expx(0) =
X.

Since the velocity along the geodesic is con-
stant, the length of the geodesic is given by
the norm of the initial velocity d(X,expx(y)) =

vl x
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Riemannian Manifolds

For each point on the manifold, the exponen-
tial map is a diffeomorphism (one-to-one, onto,
differentiable mapping in both directions).

Theinverse mapping logy : M — Tx is uniquely
defined only around the neighborhood of the
point X.

to tangent space
y = logyx (y)

Y =expy (?J)
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Riemannian Manifolds

From the definition of geodesic and the expo-
nential map, the distance between the points
on manifold can be computed by

d(X,Y) d(X,expx(y))
<logx(Y),logx(Y) >x
[ log x (V)| x

1yl x

For Riemannian manifolds endowing an inverse
mapping

d(X,Y) = |logx (X~ 1Y)
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muﬁfolds

Lie groups are well known examples of Rieman-
nian manifolds with the structure of an analytic
manifold, i.e. multiplication and inversion are
smooth maps.

The most frequently occurring Lie groups are
sets of matrices, i.e., each element in the group
IS @ matrix and the group operation is matrix
multiplication.

Special orthogonal group: rotations in 3D
Euclidean motion group: 3D rigid motions

Covariance matrices

Laplacian matrices
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Riemannian Manifolds

For symmetric matrices, the ordinary matrix
exponential and logarithm operators can be
computed easily.

Let >~ = UDU? be the eigenvalue decomposi-
tion of a symmetric matrix. The exponential

series is
exp(X) = = Uexp(D)u’
k=0 "'
> (1 k—1
og(X) = Y (=1) (= - D* = Ulog(D)uUT

k=1
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Riemannian Manifolds

Manifold operations for Lie groups are

expx(y) = Xexp(X 'y)
logx(Y) = Xlog(X_1Y)
1 1 1
expx(y) = X2exp (X_ﬁyx )X§
1 1
logx (YY) = X2log (X 2YX™ 2) X2

v

d(X,Y) = [[log(X V)]
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Riemannian Manifolds

The distance between two points is measured

d?(X,Y) = <logx(Y),logx(Y) >x
tr (|ogQ(x—%Yx—%)>

An equivalent form of in terms of joint eigen-
values of X and Y as

d(X,Y)?% =3 (Ina(X,Y))?

X. Pennec, P. Fillard, and N. Ayache. A Riemannian framework for tensor computing. 1JCV, 2006
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 Region Covariance

Given image

Low-level features

==_ flz,y) =[x v I(z,y) L(z,y) .. ]

2"d order statistics:

1%t order statistics:

Distribution function (histograms)
— Blind to spatial pattern
— Requires many samples to populate
— Noise sensitive




(RegonCoveriance

e Symmetric, positive, semi-definite = Lie group
e Low-dimensional: 7 features: 28 coefficients

— 16 bins color histogram: 4096 coefficients
e Natural way of fusing features

e |nvariant to rotation & scale changes, affine
transformations, illumination variances
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Search on Manitold
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Search on Manifolo

e Construct multiple covariance matrices from overlapping regions

X5

f(x,y) = :UyRGBIIImey]g

e Search given image for a region having similar covariance matrix
— 9 different scales (4 smaller, 4 larger, 15% scaling factor between scales)

e Keep the best matching 1000 locations, second phase, repeat the
search using all matrices

d(I, = min Zd (Ci,c]) —d(ci,ch)
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Manifold Histogram features
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Search on Manifc

Given Manifold Histogram features
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Given Manifold Histogram features
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K-NN on Manito

Feature Image-1 Feature Image-u
1 |
41 g I
Ce c,’ cy C,u

T~

c,,C,'...C.,C,2...C.1

s=100,k=5

1% of the computation

M4 | M8 | S |LM ||[Random Covariance
Performance||85.71194.64(93.30(97.32 97.77

LM: A combination of 48 anisotropic and isotropic filters (Leung and Malik). The feature space is 48 dimensional (heavy computation)
S: A set of 13 circular symmetric filters (Schmid). The feature space is 13 dimensional (heavy computation)

M4, M8: Textons (Varma and Zissermann). The texton feature space is 4 and 8 dimensional respectively (very heavy computation)
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K-NN on Manifolc

3 misclassified samples (112 classes, 109 correct / 3 false)

N %”\/%/
: \
W W 4

Test Training Training samples from the predicted
samples samples from class (however, these matches are
the same counted as misclassification)
class
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Clustering on Manitc
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Multiple 3D Motion Estimation

Inliers outliers

e Estimate the number of motions p
e Estimate the motion parameters M; i=1...p

e Existing approaches are only iterative solutions such as RANSAC
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Viean-Shift (Mode Seeking)

e Start at each point

— Estimate the density mean within a kernel
Shift the kernel
— lterate

e Combine modes
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eration

e Any three point correspondences
generate a motion hypothesis

e Generate m hypotheses

M hypotheses are either samples

from the multiple motion distribution or
random noise (outliers for the
distribution)

e Number of significant modes are the
number of motion groups p, and the
modes are the motion parameters M,
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Iteration 1

Viean-Shift on Manifold

r; = log(X ' X;)

Left multiplying by inverse we
transform the neighborhood of
X to neighborhood of |

Points on the manifold are
mapped to tangent space

X is mapped to 0



exp(mp, (X))

Iteration 1

Mean-shift vector is the average
of the points weighted by
derivative of Gaussian

Computed average is a first order
approximation to the true mean

Take the exponential of mean-
shift vector and map it onto
manifold.

X = X exp(mp, (X))

Right multiplication of vector with
X updates the location of X
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Viean-Shift on Manifold

Iterate the process
until convergence.

Iteration 2 Usually 475 iterations suffices.
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Less than half of the 83 points could be matched correctly
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Viodel Update on Mat
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e Mean of the points on the
manifold is the point that
minimizes sum of squared
geodesic distances

(= arg miny ¢y sz\il d*(X;,Y)

............... 'd

Ny

e Differentiating the error .w
function wrt Y, gives the Iiiiiiim T
following gradient descent ~ time

N
T = expy [% 2 i—1108, (X@)}

11k )
/‘Lt-l—l —_— eXPMt % [ﬁ Zd 1()(Z-.‘,AX? )logut(X%)]
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Model Update on

anifold

No model update;
Detection rate is 47.7%.

AT o515 KV

‘vaﬂro.‘f‘f‘fﬂ

i 2R P YAy Ay
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Model update
Detection rate is 100%.




Viodel Update on Manifold

=R

282-020
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C286-022

e
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‘e on Manifold
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Viodel Update on Manifold

Covariance
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Classifiers on Manifold
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Classitiers on Mani

e At each iteration, we
compute the weighted mean
of the points where the
weights are adjusted
through boosting

e Map the points to the
tangent space at the mean
and learn a weak classifier
on this vector space
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Classifiers on Manifold

e Weights of the samples which
are misclassified increase

1o

e Weighted mean moves towards (
these points producing more
accurate classifier M

e This approach minimizes the
approximation error through
averaging over several weak
classifiers
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Boosting on Manifold

e Same transformations are
applied to the test sample
and the weak learners are
evaluated
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0osting on Manifold

Input: Training set {(X;, i) bi=1..n, Xs € M, y; € {0, 1}

e Start with weights w; = 1/N,7=1...N,
F(X)=0and p(X;) = 5
e Repeatforl=1...L

— Compute the response values and weights

yi —p(X;)
p(X;)(1-p(X;))

wi = p(Xi)(1 - p(X,))

— Compute weighted mean of the points
[, = arg minye apm Z,‘Z\;l wid*(Xi,Y). ()

— Map the data points to the tangent space at p,
x; = logy, (Xi). (x)

— Fit the function g;(x) by weighted least-square re-
gression of z; to x; using weights w;.

— Update F(X) «— F(X) + 5 f1(X) and

LF(X)
p(X) « F(X) - F(X) °

i =

e Output the classifier sign

[F(X)] =sign Y, fi(X)]
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muanifold

Chosen
regions as
weak
classifiers
—D@—D@—D ------- —b@—} Human
Reject Reject Reject

e For human detection, K=30 LogitBoost classifiers is combined
with rejection cascade
e Each level of cascade detector is optimized to 99.8% true positive
rate, and 65% false positive rate
e Weak classifiers are linear regression functions learned on the
tangent space (m = 36 dimensional vector space)
— Sample subwindows, add the best classifier to the strong classifier
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Boosting on Manifold
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Boosting on Manitolc

-+ Class. on Riemannian Man. | |
"o =+=Dalal&Triggs - Ker. SVM
02_ ...... ,,\\* ............ - - Dalal&Triggs - Lin. SVM
[~ = s+« Zhu et al,
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Boosting on Manifolc

| == Mean
| === |dentity

02" """""""""""" "° ~= Vector Space |

[+ HOG
5 ;
N \E‘...,.
| Ve s z s
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Boosting on Manifold
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Boosting on Manifold
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Boosting on Manifold

-5. I‘ E'_-,_ o~

: \ .
s} . LS = "y "
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) . »
’ . fis .
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4

ssion on Manifold
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Regression on Manifold

Object coordinates Image coordinates

e The region is represented with several gradient weighted
orientation histograms computed at a regular grid
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Image coordinates

e Model the interframe motion incrementally
M; = M,;_1.AM;
where AM; corresponds to motion of target
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(a;, X;) are the pairs of observed data a € R
In vector space and the corresponding points
on the manifold.

T he regression function ¢ maps the vector space
data onto the manifold

¢ R — M

An objective function is defined as the sum
of the squared geodesic distances between the
estimations ¢(«;) and the points X;

J = Zdz [p(a;), Xi] .
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nifold

Lie algebra exists, thus the objective function
can be written as

J = Z H'OQ [90_1(0%))(@']

2 . Z llog [¢(e;)] — log [X;]]|2

up to the first order terms.

The regression function ¢ can be written as

o(a;) = exp (o Q)

where the function  : R? — R™ estimates the
tangent vectors log (X;) on the Lie algebra.
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The objective function becomes

J=Z‘a —Iog[XZ-]2

ag)” oa(x)]T ]
X = : Y = E

o] | [log(xp)]"
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ifold

e To avoid over-fitting, introduce an additional constraint on the
size of the regression coefficients (ridge regression). Solution is
given by

J=tr[(XQ - Y)T(XQ2 - Y)] + \|Q?

v

Q= (XIX+ND) XY
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muanifold

For real time tracking, keep the size of the training set small; n=200
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ssion on Manifold
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m&eciﬁc Regression

L0,

e Tracking function is learned on a training set of n
random affine transformations applied to an object class

— A class specific tracking function (e.g. tracker for faces) is
integrated to an existing pose dependent detector

e Training is an offline process and a more complex model
can be learned compared to tracking application
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m& pecific Regression

e With a sparse scan of the image, regression finds all
locations which resemble the object model

— The object detector is then evaluated only at these locations
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m&eciﬁc Regression
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0.3/ ]
«»+ Original Detector
-+ Ridge Regression - Lie Algebra
0.25- =+=Ridge Regression - Linearization
’ == Regression Forest - Lie Algebra
Regression Forest - Linearization
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L earning Class Specific Regression

7~ . Zan i & '
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T 00000

e Several parameter spaces commonly occur in computer
vision problems have Riemannian manifold structure

e Manifold based methods provide major improvements
over the existing techniques

— Graph Laplacian next?

Thanks!
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A 0000

Not shown
— Segmentation

— Compressive sensing, sparse solvers, dictionary
learning

— Fast SVM’s, distance learning, kernel PCA,
online/incremental learning, scene adaptation

— Lots of tracking methods

— Video classification

— GPU optimized vision

— Bilateral filtering

— Visualization of periodic phenomena
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R 000

Part 1: Professional background
Part 2: Snapshots of some past projects (breath)
Part 3: Manifold methods (depth)
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Part 1:
Professional Background
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MMground

e Senior Principal Research Scientist & Project Manager, MERL, MA
— Hughes Research Laboratories, CA, 1999
— AT&T Research Laboratories, NJ, 1998

e PhD: Polytechnic Institute of New York University, NY, 2002

— Segmentation

e Authored 80+ publications and invented 50+ patents
— Best Paper Runner Up Award CVPR 2007
— 2 Best Paper Nominations at ICME 2008 & AVSS 2009

e Mentored 30+ PhD students

e Recipient of the R&D 100 Award 2006

e Presidents Award MELCO Japan 2007, Superior Invention Award
MELCO Japan 2008, Research Excellence Award MELCO-PUS
Japan 2009, Directors Award MERL 2008
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makground

e Associate Editor, Journal of MVA, 2006 to present

e Associate Editor, Journal of RTIP, 2004 to present

e Guest Editor, JIMVA, Sl on Car Navigation & Vehicle Systems, 2010
e EURASIP JIVP, Sl on Tracking in Complex Scenes, 2008

e General Chair, IEEE AVSS 2010

e Advisory Board, IAPR ICPR 2010

e Program Chair, VCIP 2004 to 2008, SPIE RTI 2003 to present
e Track Chair, IEEE ICME, 2007

e Area Chair, IEEE CVPR 2009 and ICPR 2010

e Special Tracks Chair, ISVC, 2009, 2010

e Industrial Liaison IEEE ICCV 2011, Liaison IEEE IV 2009

e Organized 20+ workshops, etc. (OLCV), TPC at 40+ events

e NSF Panels, Robust Intelligence, 2008, 2010




N

Part 2:
Snapshot of “Some” Projects
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ey 0

e Depth estimation is crucial for robot vision

e Pixel-wise approaches: aperture problems, imposing smoothness
on objective function, handling depth discontinuities

e Elegant combination of piecewise planar surfaces on epipolars
e Achieves accurate yet smoother depth maps

Conventional

Patch match
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Blind Video Segmentation
e Automatic segmentation is essential for object based coding

e How to incorporate motion without explicitly computing motion,
enforce boundary consistency, and reduce computational load?

e Use 3D spatiotemporal tubes and agglomerative clustering
e Achieves 100x faster segmentation, hierarchical object trees

g | ¢

Motion saliency =—>
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Segmentation

e Generate weights based on image intensities & shape priors

e Build graph Laplacian, solve system of equations for each label
e Assign pixel to label for which it has the highest probability

e \ery accurate semi-automatic segmentation tool

Without Shape Prior With Shape Prior

Image to a weighted graph

4x4 image 4x4 weighted graph
HE -
abstraction

Compute probability that emitted graph front
from seeds arrive at pixels
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S

e Application: lighting compensation for recognition, tracking tasks
e Lighting conditions and surface structures are unknown
e |ntrinsic images as midlevel decomposition, ML on sparseness

e Achieves moving object detection under drastic lighting changes

Original image lllumination map Before

lighting

After lighting
change

Ao
¥ -,Aq

= |




e Bilateral filters smooth redundant texture yet preserve edges
e Joint range & domain filtering, computationally very intensive!
e |ntegral histogram, power images, Taylor expansion

e 0O(1) load, fastest bilateral filter in 2008 (200 fps @ 1MB GPU)

Dr. Fatih Porikli —
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Camera Distortion Correction

e Application: projection of video onto dynamic surfaces

e Real-time calibration is required, conventional solutions are slow
e Warping estimation by dynamic programming in motion space

e Achieves load reduction from “exponential cubic” to “quadratic”

.............
\\\\\\

Compensated image



10N

e (Geo-mapping, navigation, aerial camera position refinement
e Low-resolution, significant appearance variance, good features?
e Recursive propagation, orientation cues, multi-layer neural net

e |Improves alignment accuracy more than 5x, speed 1000x
Detected highways

i Detected roads

o
3

uy
§

:\.\ N
Vector map >/

Satellite image
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ed Kernel MS

e Clusteringis a core task for many vision problems

e Fully automatic methods would not obey underlying manifold
e Subspace projections on must link constraints in kernel mean-shift
e First density estimator that can incorporate weakly labeled data

Kernel-MS WS K-MS

g
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e An efficient method for the
adaptation of linear weak classifiers

— Instead of replacing, weak classifiers
themselves are modified

— Avoids the issue of how many weak
classifiers to be replaced or which fast
search algorithm to use

e /ero memory

Adaptation of linear classifier:
Top: without forgetting, Bottom : with forgetting

Dr. Fatih Porikli — April 28

f LC Ensembles

Weak classifier set at t =4

0 = ™ 80 @0 1

Vveak classiier setatt =23




e Analytics is the ultimate goal of surveillance systems

e Without requiring higher level semantics and user interaction,
how to distinguish usual from unusual?

e Cross-fitness trajectory alignment, spectral clustering, conformity
e Enables automatic detection of usual & unusual motifs

Spectral
analysis

Tracking

Usual pattern e e—

Eigenvector
Decomposition

~

conformity

Dr. Fatih Porikli — April 28



pdate

e Background learning is essential for static camera surveillance
e GMM with EM update fails for complex scenes blending models
e |nstead of mixture, use layers of multivariate Gaussians

e Bayesian update preserves multimodality, automatically
determines necessary layers

histogram of values for 4 processes

100
EM Update Results Bayes Update Results

number of occurances

0 0.2 0.4 0.6 0.8 1

Sampled distribution

Traffic video
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Model Update on Manifold

Intensity histogram Orientation Motion history Saliency

smapHaol smapHoG srnaphdHl smapSpectral

smapTemplate input smapWWeighted waights

Template similarity Final result Likelihood map Fusion weights

| xscale=1.1yscale=09 weightsurm= 2 6847

= sy
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Cyclo-Stationary Scene Learning

e Certain backgrounds are in motion: sea, trees, mirage, turbulence
e Intensity models fails for such scenes causing false detection

e Mixture modeling of frequency instead of magnitude

e Accurate detection of moving objects, 4x less errors

Thermal IR, seaside with a boat




e Finding left-behind/removed objects is a main surveillance task
e Tracking may not work always, complementary method is needed
e Dual background are adapted at different learning rates

e Real-time detection with customizable settings, robust method
adapts to scene changes

Multi-kernel mean shift Dual background




Mor Moving Object/Camera

e Application: UAV’s and other aerial platforms

e Updating a scene model for moving cameras is costly

e Forward/backward motion history with RANSAC motion estimation
e Computationally efficient, robust, works for low-quality data

Detection result
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r Moving Object/Camera

e Application: UAV’s and other aerial platforms

e Tracking in low-quality video, small target size is challenging
e Density estimator on classifier scored likelihood surface

e Automatically selects the most discriminative features

Intensity histogram Orientation Motion history Saliency

smapWeighted weights
16=09 weightsum= 2.6847
”
e i
- s—
iy
= P I I

Template similarity Final result Likelihood map Fusion weights
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e Core technology for surveillance systems

e QOcclusions, appearance variation, shadows, lighting changes
e Multi-kernel mean-shift, particle filter, ensemble tracker

e Fast, robust trackers (5msec/object), low frame rate tracking
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Tumor Tracking

Particle beam therapy is the most advanced tumor treatment
Tumors dislocate due to breathing, etc. during treatment
Non-intrusive approach, regressed & graph propagation methods

Very accurate (<2mm error), computationally very fast (<30 msec)
methods for visible & invisible tumors in ultrasound & X-ray videos
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e A sampling based hypothesis
verification approach

e Any motion can be incorporated,

multiple targets can be detected

e No assumptions on noise &
clutter distributions

e Very fast, complexity is easily
scalable wrt performance

— Much faster than Bayesian, Viterbi.

Faster than Particle filter, P-MHT

e 3x improvement
10-%false alarm rate for SNR < 7dB

True Detection Rate

Detection Performance Curves - Needle Picking and CFAR

—CFAR |
—Needle Picking
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Supplementary Slides
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Technology
Fragile Forgiving applications

Ask human first Take charge

System load

Track 1~10 objects Pervasive
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e Methods differ in terms of:
— Speed, regularity, type of the motions that they can track
— Single, joint, crowd modes

— Partial, full occlusion handling

— Model update mechanisms
— Computational load

rison

occlusions

e Can only detect
small motion

e Makes strong
Gaussian
assumptions

eRequires object
window to overlap
between
consecutive frames

eRobustness highly
depends on the
likelihood function

Optical Flow Kalman-MHT Mean-Shift Particle filter Regression
eLow complexity [eCan overcome |eNon parametric eEnables tracking |[eCan track the
eNeeds only occlusions eLow complexity in multiple states | pose of an object
pixel-wise priors | e Compensate eHandles occlusion | eVery low

for erratic and fast objects complexity
motion
e \Very sensitive |e Limited to eSensitive to eComputationally |eMotion model
to clutter and linear motion occlusions very expensive should be

parametric
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Visualization of Periodic Phenomena

Bl Ultrasound FFT
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.MHHM&” Manifold

Mean-Shift Covariance Tracker

e Histograms are difficult to populate for small objects
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Vioael Update on l\/l

e
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e Main application is traffic surveillance and control

e 100’s of videos should be processed in real-time
e Use compressed video, DCT/MV features, HMM ML estimator

e Achieved 97% accuracy with 10 seconds latency, 10 msec/video
processing speed, geometry independent

—» Set of GM-HMMs —» ML Classifier Heavy i
A Mild
_i— Open
_______ , Offline training Empty

(setup independent)
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ion of Periodic Phenomena

e Certain systems require operator to perceive periodicity

e Watching video comprising multiple motions is not comprehensive
e Graph and FFT based representation, Markov state-estimators

e Effective visualization, 10:1 preference on user study




