Jain B.J., Srinivasan S.D., Tissen A., Obermayer K.

18 Aug 2010

FG Neuronale Informationsverarbeitung, Technische Universitaet Berlin

Jain B.J., Srinivasan S.D., Tissen A., Oberma Learning Graph Quantization

Setting the stage

- Attributed Graphs- commonly used in Structural Pattern Recognition to represent data
 - Potentially very powerful means to represent data with high descriptive power
 - Constrained in applications by lack of methods for ML tasks like classification and clustering
- Classification/Clustering of patterns represented by Attributed Graphs is a fundamental problem in Structural Pattern Recognition
- Embed the graphs into a *feature*(vector) space and to carry out the Classification/Clustering taks there
- Loss of structural information when embedding

Structure Spaces- A quick review

- Isomorphic and isometric embedding of combinatorial structures into a vector space
- An Attributed Graph $X = (V, E, \alpha)$ given by its adjacency matrix **X**
 - V vertices, $E \subseteq V \times V$ edges, attribute function $\alpha : V \to D^V$; $E \to D^E$
- *X* = ℝ^{n×n} be the space of all (*n* × *n*)-matrices, *T* denote a subgroup of all (*n* × *n*)-permutation matrices
- Two adjacency matrices are equivalent if $\mathbf{P}^{\mathsf{T}}\mathbf{X}\mathbf{P} = \mathbf{X'}$
- The equivalent class of structures partition the underlying space into quotient sets, projecting every structure to its abstract representation

Structure Spaces

Structure Spaces- A quick review

• Consider the graph distance measure,

$$d(X, Y) = \min\left\{ \|\mathbf{x} - \mathbf{y}\|^2, \mathbf{x} \in X, \mathbf{y} \in Y \right\}$$

- This is indeed a metric
- Consider the generalized inner product,
 - $< X, Y >= \max\left\{ < \mathbf{x}, \mathbf{y} >, \mathbf{x} \in X, \mathbf{y} \in Y \right\}$
 - This behaves much like inner product, measures structural similarity between graphs
- Compute these quantities by fixing representation of one graph and maximizing/minimizing over all possible representations of the other
- Price to pay: computational complexity

- An algorithm to construct classifier for set of Attributed Graphs
- A set of prototypes are chosen such that the patterns are classified by means of Nearest prototype (NPC)
- Advantages
 - Easy extension to Multi-Class problem
 - Prototypes act as typical class representatives that could be used for further applications

- Classifier $c : X_T \to C$ that maps graphs from X_T to class labels from a finite set C
- k prototypes $W_1, \ldots, W_k \in \mathcal{X}_\mathcal{T}$ with class labels $c_1, \ldots, c_k \in \mathcal{C}$
- \bullet Objective- The prototypes should best predict the class labels of graphs from $\mathcal{X}_{\mathcal{T}}$
- Prototypes should be far away from the decision surface
- This is done by pulling the prototypes from the incorrect labelled data and pushing them towards the correct labelled data

Algorithm 1 (LGQ1)

Given:

training set
$$\mathcal{S} = \{(X_1, I(X_1)), \dots, (X_n, I(X_n))\} \subseteq \mathcal{X}_{\mathcal{T}} \times \mathcal{C}$$

Procedure:

- 1. choose initial prototypes $\mathcal{W} = \{(W_1, I(W_1)), \dots, (W_k, I(W_k))\} \subseteq \mathcal{X}_T \times C$
- 2. do until convergence or learning rate vanishes
 - 2.1. randomly select a training example $(X, y) \in \mathcal{S}$
 - 2.2. let $W_X = \arg \min_{W \in \mathcal{W}} d(X, W)$
 - 2.3 Align X with W_X
 - 2.4. With learning rate $\eta > 0$
 - 2.5. update according to the rule

$$\mathbf{w}_{\mathbf{x}} \leftarrow \begin{cases} \mathbf{w}_{\mathbf{x}} + \eta \left(\mathbf{x} - \mathbf{w}_{\mathbf{x}} \right) & \text{if } I(X) = I(W_X) \\ \mathbf{w}_{\mathbf{x}} - \eta \left(\mathbf{x} - \mathbf{w}_{\mathbf{x}} \right) & \text{if } I(X) \neq I(W_X) \end{cases}$$

Return: set W, I(.) of prototypes along with class labels

Experiments

IAM graph dataset repository- Letter (HIGH), GREC, Fingerprint

data set	#(graphs)	#(classes)	avg(nodes)	max(nodes)	avg(edge
letter	750, 750	15	4.7	8	3.1
grec	286, 528	22	11.5	24	11.9
fingerprint	500, 2000	3	5.4	26	4.4

Table: Summary of main characteristics of the data sets

Experiments

Method	Letter	Fingerprint	GREC
LGQ + NPC	80.9%	79.2%	94.7%
LGQ2 + NPC	83.7%	82.2%	97.3%
k-NN (Ref.)	90%	76.7%	95.5%
SK + SVM (SoA)	79.1%	41%	94.9%
LE + SVM (SoA)	92.5%	82.8%	96.8%
Top.Emb. (SoA)	-	-	95.8%

- A structure preserving representation of attributed graphs is proposed. The quotient space is the simplest example of an *orbifold*
- This leads to an inherent definition of graph metric and update rule
- Principled extension of standard machine learning algorithms to the domain of structural pattern recognition
- Prototypes could act as typical class representatives; for expert interpretation or to devise better classification strategies

- Computational costs
 - Any shortcuts ??- Explore the geometry of structure spaces
 - Faster, better graph matching algorithms ??
- Extend other LVQ algorithms to attributed graphs
- A general theory of *learning over orbifolds*
- Theory must be developed and tuned in conjunction with applications

