
Panel Talk

High-Dimesional Spectral   
Feature Selection for 3D Object 
Recognition Based on 
Reeb Graphs 

S+SSPRAugust 18 -20 2010
                           Cesme,TURKEY

,
Boyan Bonev &
Francisco Escolano UA (Spain)
Daniela Giorgi &
Silvia Biasotti IMATI (Italy)



High-Dimensional Feature Selection

Background. Feature selection in CVPR is mainly motivated by: (i)
dimensionality reduction for improving the performance of classifiers,
and (ii) feature-subset pursuit for a better understanding/description
of the patterns at hand (either using generative or discriminative
methods).
Exploring the domain of images [Zhu et al.,97] and other patterns
(e.g. micro-array/gene expression data) [Wang and Gotoh,09] implies
dealing with thousands of features [Guyon and Elisseeff, 03]. In terms
of Information Theory (IT) this task demands pursuing the most
informative features, not only individually but also capturing their
statistical interactions, beyond taking into account pairs of features.
This is a big challenge since the early 70’s due to its intrinsic
combinatorial nature.
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Wrappers and Filters

Wrappers vs Filters

1. Wrapper feature selection (WFS) consists in selecting features
according to the classification results that these features yield
(e.g. using Cross Validation (CV)). Therefore wrapper feature
selection is a classifier-dependent approach.

2. Filter feature selection (FFS)is classifier independent, as it is
based on statistical analysis on the input variables (features),
given the classification labels of the samples.

3. Wrappers build classifiers each time a feature set has to be
evaluated. This makes them more prone to overfitting than
filters.

4. In FFS the classifier itself is built and tested after FS.
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FS is a Complex Task

The Complexity of FS

The only way to assure that a feature set is optimum (following what
criterion?) is the exhaustive search among feature combinations.
The curse of dimensionality limits this search, as the complexity is

O(z), z =
n∑

i=1

(
n
i

)
Filters design is desirable in order to avoid overfitting, but they must
be as multivariate as Wrappers. However, this implies to design and
estimate a cost function capturing the high-order interaction of
many variables. In the following we will focus on FFS.
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Mutual Information Criterion

A Criterion is Needed

The primary problem of feature selection is the criterion which
evaluates a feature set. It must decide whether a feature subset is
suitable for the classification problem, or not. The optimal criterion
for such purpose would be the Bayesian error rate for the subset of
selected features:

E (~S) =

∫
~S

p(~S)

(
1−max

i
(p(ci |~S))

)
d~S ,

where ~S is the vector of selected features and ci ∈ C is a class from
all the possible classes C existing in the data.
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Mutual Information Criterion (2)

Bounding Bayes Error

An upper bound of the Bayesian error, which was obtained by
Hellman and Raviv (1970) is:

E (~S) ≤ H(C |~S)

2
.

This bound is related to mutual information (MI), because mutual
information can be expressed as

I (~S ; C ) = H(C )− H(C |~S)

and H(~C ) is the entropy of the class labels which do not depend on
the feature subspace ~S .
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Mutual Information Criterion (3)

I(X;C)

C
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Figure: Redundancy and MI
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Mutual Information Criterion (4)

MI and KL Divergence

From the definition of MI we have that:

I (X ; Y ) =
∑
y∈Y

∑
x∈X

p(x , y) log
p(x , y)

p(x)p(y)

=
∑
y∈Y

p(y)
∑
x∈X

p(x |y) log
p(x |y)

p(x)

= EY (KL (p(x |y)||p(x))).

Then, maximizing MI is equivalent to maximizing the expectation of
the KL divergence between the class-conditional densities P(~S |~C )
and the density of the feature subset P(~S).
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Mutual Information Criterion (5)

The Bottleneck
I Estimating mutual information between a high-dimensional

continuous set of features, and the class labels, is not
straightforward, due to the entropy estimation.

I Simplifying assumptions: (i) Dependency is not-informative
about the class, (ii) redundancies between features are
independent of the class [Vasconcelos & Vasconcelos, 04].
The basic idea is to simplify the computation of the MI. For
instance:

I ( ~S∗; C ) ≈
∑
xi∈~S

I (xi ; C )

I More realistic assumptions involving interactions are needed!
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The mRMR Criterion

Definition

Maximize the relevance I (xj ; C ) of each individual feature xj ∈ ~F
and simultaneously minimize the redundancy between xj and the

rest of selected features xi ∈ ~S , i 6= j . This criterion is known as the
min-Redundancy Max-Relevance (mRMR) criterion and its
formulation for the selection of the m-th feature is [Peng et al., 2005]:

max
xj∈~F−~Sm−1

I (xj ; C )− 1

m − 1

∑
xi∈~Sm−1

I (xj ; xi )


Thus, second-order interactions are considered!
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The mRMR Criterion (2)

Properties

I Can be embedded in a forward greedy search, that is, at each
iteration of the algorithm the next feature optimizing the
criterion is selected.

I Doing so, this criterion is equivalent to a first-order using the
Maximum Depedency criterion:

max
~S⊆~F

I (~S ; C )

Then, the m-th feature is selected according to:

max
xj∈~F−~Sm−1

I (~Sm−1, xj ; C )
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Efficient MD

Need of an Entropy Estimator

I Whilst in mRMR the mutual information is incrementally
estimated by estimating it between two variables of one
dimension, in MD the estimation of I (~S ; C ) is not trivial
because ~S could consist of a large number of features.

I If we base MI calculation in terms of the conditional entropy
H(~S |~C ) we have:

I (~S ; ~C ) = H(~S)− H(~S |~C ).

To do this,
∑

H(~S |C = c)p(C = c) entropies have to be
calculated, Anyway, we must calculate multi-dimensional
entropies!
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Leonenko’s Estimator

Theoretical Bases

Recently Leonenko et al. published an extensive study [Leonenko et

al, 08] about Rényi and Tsallis entropy estimation, also considering
the case of the limit of α→ 1 for obtaining the Shannon entropy.
Their construction relies on the integral

Iα = E{f α−1(~X )} =

∫
Rd

f α(x)dx ,

where f (.) refers to the density of a set of n i.i.d. samples
~X = {X1,X2, . . . ,XN}. The latter integral is valid for α 6= 1,
however, the limits for α→ 1 are also calculated in order to consider
the Shannon entropy estimation.
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Leonenko’s Estimator (2)

Entropy Maximization Distributions

I The α-entropy maximizing distributions are only defined for
0 < α < 1, where the entropy Hα is a concave function. The
maximizing distributions are defined under some constraints.
The uniform distribution maximizes α-entropy under the
constraint that the distribution has a finite support. For
distributions with a given covariance matrix the maximizing
distribution is Student-t, if d/(d + 2) < α < 1, for any number
of dimensions d ≥ 1.

I This is a generalization of the property that the Gaussian
distribution maximizes the Shannon entropy H.
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Leonenko’s Estimator (3)

Rényi, Tsallis and Shannon Entropy Estimates

For α 6= 1, the estimated I is:

ÎN,k,α = 1
N

∑n
i=1(ζN,i ,k)1−α,

with

ζN,i ,k = (N − 1)CkVd(ρ
(i)
k,N−1)d ,

where ρ
(i)
k,N−1 is the Euclidean distance from Xi to its k-th nearest

neighbour from among the resting N − 1 samples.

Vd = π
d
2 /Γ(d2 + 1) is the volume of the unit ball B(0, 1) in Rd and

Ck is Ck = [Γ(k)/Γ(k + 1− α)]
1

1−α .
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Leonenko’s Estimator (4)

Rényi, Tsallis and Shannon Entropy Estimates (cont.)

I The estimator ÎN,k,α is asymptotically unbiased, which is to say

that E ÎN,k,α → Iq as N →∞. It is also consistent under mild
conditions.

I Given these conditions, the estimated Rényi entropy Hα of f is

ĤN,k,α =
log(ÎN,k,α)

1−α , α 6= 1,

and for the Tsallis entropy Sα = 1
q−1 (1−

∫
x f α(x)dx) is

ŜN,k,α =
1−ÎN,k,α
α−1 , α 6= 1.

and as N →∞, both estimators are asymptotically unbiased
and consistent.
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Leonenko’s Estimator (5)

Shannon Entropy Estimate

The limit of the Tsallis entropy estimator as α→ 1 gives the
Shannon entropy H estimator:

ĤN,k,1 =
1

N

N∑
i=1

log ξN,i ,k ,

ξN,i ,k = (N − 1)e−Ψ(k)Vd(ρ
(i)
k,N−1)d ,

where Ψ(k) is the digamma function:
Ψ(1) = −γ ' 0.5772,Ψ(k) = −γ + Ak−1, A0 = 0,Aj =

∑j
i=1

1
i .
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Leonenko’s Estimator (6)
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Figure: Comparison: k-NN vs k-d partitioning estimator for Gaussians.
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Structural Recognition

Reeb Graphs

I Given a surface S and a real function f : S → R, the Reeb
graph (RG), represents the topology of S through a graph
structure whose nodes correspond to the critical points of f .

I The Extended Reeb Graph (ERG) [Biasotti, 05] is an
approximation of the RG by using of a fixed number of level
sets (63 in this work) that divide the surface into a set of
regions; critical regions, rather than critical points, are
identified according to the behaviour of f along level sets; ERG
nodes correspond to critical regions, while the arcs are detected
by tracking the evolution of level sets.
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Structural Recognition (2)

Figure: Extended Reeb Graphs. Image by courtesy of Daniela Giorgi and
Silvia Biasotti. a) Geodesic, b) Distance to center, b) bSphere
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Structural Recognition (3)

Catalog of Features

I Subgraph node centrality: quantifies the degree of participation
of a node i in a subgraph.

CS(i) =
∑n

k=1 φk(i)2eλk ,

where where n = |V |, λk the k-th eigenvalue of A and φk its
corresponding eigenvector.

I Perron-Frobenius eigenvector: φn (the eigenvector
corresponding to the largest eigenvalue of A). The components
of this vector denote the importance of each node.

I Adjacency Spectra: the magnitudes |φk | of the (leading)
eigenvalues of A have been been experimentally validated for
graph embedding [Luo et al.,03].

21/39



Structural Recognition (4)

Catalog of Features (cont.)

I Spectra from Laplacians: both from the un-normalized and
normalized ones. The Laplacian spectrum plays a fundamental
role in the development of regularization kernels for graphs.

I Friedler vector: eigenvector corresponding to the first
non-trivial eigenvalue of the Laplacian (φ2 in connected
graphs). It encodes the connectivity structure of the graph
(actually is the core of graph-cut methods).

I Commute Times either coming from the un-normalized and
normalized Laplacian. They encode the path-length distribution
of the graph.

I The Heat-Flow Complexity trace as seen in the section above.
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Structural Recognition (5)

Backwards Filtering

I The entropies H(·) of a set with a large n number of features
can be efficiently estimated using the k-NN-based method
developed by Leonenko.

I Thus, we take the data set with all its features and determine
which feature to discard in order to produce the smallest
decrease of I ( ~Sn−1; ~C ).

I We then repeat the process for the features of the remaining
feature set, until only one feature is left [Bonev et al.,10].

I Then, the subset yielding the minimum 10-CV error is selected.

I Most of the spectral features are histogrammed into a variable
number of bins: 9 · 3 · (2 + 4 + 6 + 8) = 540 features.
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Experimental Results

Elements
I SHREC database (15 classes × 20 objects). Each of the 300

samples is characterized by 540 features, and has a class label
l ∈ {human, cup, glasses, airplane, chair, octopus, table, hand,
fish, bird, spring, armadillo, buste, mechanic, four-leg}

I The errors are measured by 10-fold cross validation (10-fold
CV). MI is maximized as the number of selected features grows.
A high number of features degrades the classification
performance.

I However the MI curve, as well as the selected features, do not
depend on the classifier, as it is a purely information-theoretic
measure.
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Structural Recognition (7)

Figure: Classification error vs Mutual Information.
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Structural Recognition (8)

Figure: Feature selection on the 15-class experiment (left) and the feature
statistics for the best-error feature set (right).
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Structural Recognition (9)

Analysis

I For the 15-class problem, the minimal error (23, 3%) is achieved
with a set of 222 features.

I The coloured areas in the plot represent how much a feature is
used with respect to the remaining ones (the height on the Y
axis is arbitrary).

I For the 15-class experiment, in the feature sets smaller than
100 features, the most important is the Friedler vector, in
combination with the remaining features. Commute time is also
an important feature.Some features that are not relevant are
the node centrality and the complexity flow. Turning our
attention to the graphs type, all three appear relevant.
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Structural Recognition (10)

Analysis (cont)

I We can see that the four different binnings of the features do
have importance for graph characterization.

I These conclusions concerning the relevance of each feature
cannot be drawn without performing some additional
experiments with different groups of graph classes.

I We perform our different 3-class experiments. The classes share
some structural similarities, for example the 3 classes of the
first experiment have a head and limbs.

I Although in each experiment the minimum error is achieved
with very different numbers of features, the participation of
each feature is highly consistent with the 15-class experiment.
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Structural Recognition (11)

Figure: Feature Selection on 3-class experiments:
Human/Armadillo/Four-legged, Aircraft/Fish/Bird
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Structural Recognition (12)

Figure: Feature Selection on 3-class experiments: Cup/Bust/Mechanic,
Chair/Octopus/Table.
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Structural Recognition (14)
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Structural Recognition (15)
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Figure: Bootstrapping experiments on forward (on the left) and backward
(on the right) feature selection, with 25 bootstraps.
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Structural Recognition (16)

Conclusions
I The main difference among experiments is that node centrality

seems to be more important for discerning among elongated
sharp objects with long sharp characteristics. Although all three
graph types are relevant, the sphere graph performs best for
blob-shaped objects.

I Bootstrapping shows how better is the Backwards method.

I The IT approach not only performs good classification but also
yield the role of each spectral feature in it!

I Given other points of view (size functions, eigenfunctions,...) it
is desirable to exploit them!
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Questions?

Challenges

I It is straightforward to deal with attributed graphs
complementing structured, and how is it introduced in the
algorithm? (is modifying Laplacian enough?)

I What is the limit of the bypass entropy estimator and,
consequently of the number of features we can extract?

I What happens when it is needed to measure Mutual
Information between multidimensional variables, not in
classification but in regression problems?

I Does the method provides an insight of how to incorporate
other graph descriptors?
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