

# Dissimilarity-Based Multiple Instance Learning

Lauge Sørensen<sup>1</sup>, Marco Loog<sup>1,2</sup>, David M.J. Tax<sup>2</sup>, Wan-Jui Lee<sup>2</sup>, Marleen de Bruijne<sup>1,3</sup>, and Robert P.W. Duin<sup>2</sup>

 The Image Group, Dept. of Computer Science, University of Copenhagen, Denmark
 Pattern Recognition Laboratory, Delft University of Technology, The Netherlands
 Biomedical Imaging Group Rotterdam, Departments of Radiology & Medical Informatics, Erasmus MC, Rotterdam, The Netherlands×



- In MIL an object is represented by a set (*bag*) of sub-objects (*instances*) with a label (positive/negative) associated with the entire bag
- Unseen bag classified based on the instances it contains:
  - positive = contains at least one positive instance
  - negative = contains no positive instances



## Approach

• Dissimilarity-based classification of bags using a suitable bag dissimilarity measure  $B_1 = B_1 = B_2$ 

 Done before using the kNN classifier (and modifications; Citation-kNN) with the Hausdorff distance between instances as dissimilarity [1]

$$d_H = \max\{d_{dir}(\mathbf{B_1}, \mathbf{B_2}), d_{dir}(\mathbf{B_2}, \mathbf{B_1})\}$$

[1] Wang, J. and Zucker, J.D., "Solving the multiple-instance problem: A lazy learning approach," In Proc. ICML, 2000





# Approach

• Propose to use the dissimilarity representation approach [2]



#### University of Copenhagen

• Propose bag dissimilarities that take instance distance distributions between and within bags into account



• Assumes positive and negative bags have different distributions of instance distances

 $B_2$ 

#### Advances



- Better utilization of the training data compared to *k*NN
- Less restrictions on the bag proximity measure compared to, e.g., kernel-based approaches
- Now we can use:
  - L<sub>1</sub>
  - Hausdorff (and modifications hereof),
  - Hamming
  - single linkage
  - Fisher criterion
  - *d*<sub>BWmean</sub> (proposed bag dissimilarity measures)

- ...

#### Advances



Within-bag instance relations may add discriminative information

|                         |                                    | Elephant | Fox  |
|-------------------------|------------------------------------|----------|------|
| uses instance relations | <i>d<sub>BWmean</sub></i> + Fisher | 88.5     | 64.0 |
|                         | MIGraph [3]                        | 85.1     | 61.2 |
|                         | MI-SVM [4]                         | 81.4     | 59.4 |
| WICHIN 2082             |                                    |          |      |

• Within-bag relations modeled less rigid as opposed to, e.g., using a graph representation + graph kernel [3]

[3] Zhou, Z.H., Sun, Y.Y., and Li, Y.F., "Multi-instance learning by treating instances as non-i.i.d. samples," In Proc. ICML, 2009
[4] Andrews, S., Tsochantaridis, I., and Hofmann, T., "Support vector machines for multiple-instance learning," In Proc. NIPS, 2002

### Challenges

- Designing good bag dissimilarity measures
  - using application specific knowledge
  - using the training set
- Systematic prototype selection for good dissimilarity spaces [5]
- How to account for the number of instances in the bags being compared

[5] Pekalska, E., Duin, R.P.W., and Paclik, P., "Prototype selection for dissimilarity-based classifiers," Pattern Recognition , 2006

### Questions



- Can we solve the "strict" MIL problem (bag positive iff. contains at least one positive instance)?
- Which more general MIL problems can we solve?
- Possible to characterize for which MIL problems it is useful to take instance relations (within bags) into account?
- Can we design good bag dissimilarity measures that could otherwise not be used in a kernel-based approach?
- How can one exploit the fact that bags can contain a substantially different number of instances?