Reaction and Diffusion on Fractal Sets

D. S. Broomhead and Caroline Riley

The School of Mathematics, The University of Manchester.

Chemical Processes in Cells

Chemical Processes in Cells

- Molecular Crowding
- Exciton Annihilation

Experiment

- Rate Constants
- The Sierpinski Gasket
- Calculus on the Sierpinski

Gasket

- Numerics on the Gasket:
symmetric case
- Relating the Rate Coefficients
- Relating the Rate Coefficients
- Rate

Coefficients-non-symmetric
case

- Numerics on the Gasket: non-symmetric case
- Remarks About the Numerics - Concluding Remarks
- When modelling chemical processes in cells, it is usual to build models which:
- are based on mass action kinetics
- have no spatial structure beyond simple compartmentalisation
- Is the mass action assumption appropriate?
- the cytoplasm is a very crowded place (5-40\% of volume is occupied by macromolecules)
- reactive species can often be extremely dilute
- Experimental techniques are beginning to resolve spatial detail-perhaps dynamically in the not too distant future
- What can we do about modelling spatio-temporal dynamics within cells?

Molecular Crowding

- Chemical Processes in Cells
- Molecular Crowding
- Exciton Annihilation

Experiment

- Rate Constants
- The Sierpinski Gasket
- Calculus on the Sierpinski

Gasket

- Numerics on the Gasket
symmetric case
- Relating the Rate Coefficients
- Relating the Rate Coefficients
- Rate

Coefficients-non-symmetric
case

- Numerics on the Gasket non-symmetric case
- Remarks About the

Numerics

- Concluding Remarks
- Molecular crowding has a number of well-established thermodynamic consequences
- Here we will be interested in dynamical consequeces:
- The available volume through which a given molecule can move depends on its size and shape
- Molecules can be effectively confined to low-dimensional spaces
- For example: 1D pores
- Highly ramified (fractal) spaces
- Can we model this mathematically? What issues need to be addressed?

Medalia et al Science 298 (2002) 1209

Exciton Annihilation Experiment

- Chemical Processes in Cells
- Molecular Crowding - Exciton Annihilation

Experiment

- Rate Constants
- The Sierpinski Gasket
- Calculus on the Sierpinski

Gasket

- Numerics on the Gasket:
symmetric case
- Relating the Rate Coefficients
- Relating the Rate Coefficients
- Rate

Coefficients-non-symmetric
case

- Numerics on the Gasket: non-symmetric case
- Remarks About the

Numerics

- Concluding Remarks
- Experiment used random naphthalene crystals where $\sim 8 \%$ mole fraction was undeuterated.
- Triplet excitons mobile in the undeuterated component which forms a percolating cluster within the crystal
- Triplets can annihilate when two collide-naïve mass action kinetics implies the rate of loss of triplet is proportional to the square of the triplet concentration.
- Experimentally, however, this 'constant' decays in time as a power law $\kappa(t) \sim t^{-h}$
- The experimental h fits the theoretical value $1-d_{s} / 2$, where d_{s} is the spectral dimension of the fractal

Kopelman J.Stat.Phys. 42 (1986) 185

Rate Constants

- Smoluchowski's theory (1917) is based on computing a diffusive flux of reactants onto one another
- The observed rate depends on both the intrinsic rate (k) and
- Chemical Processes in Cells
- Molecular Crowding - Exciton Annihilation

Experiment

- The Sierpinski Gasket
- Calculus on the Sierpinski

Gasket

- Numerics on the Gasket:
symmetric case
- Relating the Rate Coefficients
- Relating the Rate Coefficients
- Rate

Coefficients-non-symmetric
case

- Numerics on the Gasket: non-symmetric case - Remarks About the Numerics - Concluding Remarks the relative diffusion (D) (here R is the distance of closest approach of the molecules)

$$
\kappa=\frac{4 \pi D R k}{4 \pi D R+k}
$$

- It is assumed that chemical concentrations are continuous functions of space
- The derivation fails in less than 3 dimensions
- We shall assume a reaction-diffusion model of the dynamics.
- The rates will be assumed to be intrinsic
- We will work on a fractal domain-the Sierpinski Gasket
- We are interested in models which give insight into the role of the complex spatial structures that arise in cells

The Sierpinski Gasket

- Chemical Processes in Cells
- Molecular Crowding
- Exciton Annihilation

Experiment

- Rate Constants
- The Sierpinski Gasket
- Calculus on the Sierpinski

Gasket

- Numerics on the Gasket
symmetric case
- Relating the Rate Coefficients
- Relating the Rate Coefficients
- Rate

Coefficients—non-symmetric
case

- Numerics on the Gasket: non-symmetric case - Remarks About the Numerics
- Concluding Remarks
- An uncountable, compact, self-similar subset of \mathbb{R}^{2}
- Hausdorff dimension $d_{H}=\log 3 / \log 2$ and spectral dimension $d_{s}=\log 9 / \log 5$
- Approximate with a sequence of graphs $\left(V_{n}, E_{n}\right)$ whose vertices become dense in the set
- $V_{n+1}=f_{0}\left(V_{n}\right) \cup f_{1}\left(V_{n}\right) \cup f_{2}\left(V_{n}\right)$ where $f_{i}=\left(x-p_{i}\right) / 2+p_{i}$ and the p_{i} are three fixed non-colinear points in the plane

Calculus on the Sierpinski Gasket

- Chemical Processes in Cells
- Molecular Crowding
- Exciton Annihilation

Experiment

- Rate Constants
- The Sierpinski Gasket
- Calculus on the Sierpinski
- Numerics on the Gasket:
symmetric case
- Relating the Rate Coefficients
- Relating the Rate Coefficients
- Rate

Coefficients-non-symmetric
case

- Numerics on the Gasket non-symmetric case
- Remarks About the

Numerics

- Concluding Remarks
- The Laplacian can be constructed as a renormalised sequence of graph Laplacians
- A lot is known rigourously about this operator
- Its spectrum can be found by a decimation process

- A normal derivative $\left(\partial_{n}\right)$ can also be defined and then a Gauss-Green theorem can be proved. From which if follows that:

$$
\int_{\mathrm{SG}} \nabla^{2} A d \mu=\sum_{V_{0}} \partial_{n} A
$$

- Green's functions can be constructed explicitly

Numerics on the Gasket: symmetric case

- Can we model the exciton experiment using this?
- We solve the following reaction-diffusion equation (with $k=0.1$ and $D=0.01$) on the Sierpinski Gasket:
- Chemical Processes in Cells
- Molecular Crowding
- Exciton Annihilation

Experiment

- Rate Constants
- The Sierpinski Gasket
- Calculus on the Sierpinski

Gasket

- Numerics on the Gasket:
symmetric case
- Relating the Rate Coefficients
- Relating the Rate Coefficients
- Rate

Coefficients-non-symmetric case

- Numerics on the Gasket: non-symmetric case - Remarks About the Numerics
- Concluding Remarks

$$
\frac{\partial A}{\partial t}=D \nabla^{2} A-k A^{2}
$$

- A plot of $\kappa(t)=\frac{d \bar{A} / d t}{\bar{A}^{2}}(\bar{A}$ is the uniform average of $A)$ does not show a power law-it decays to k

Relating the Rate Coefficients

Consider this case: $A+A \rightarrow$ product, and write averages:

$$
\bar{A}=\int_{\mathrm{SG}} A d \mu
$$

We have two expressions:

- The Sierpinski Gasket
- Calculus on the Sierpinski

Gasket

- Numerics on the Gasket:
symmetric case
ORelating the Rate Coefficients
- Relating the Rate Coefficients
- Rate

Coefficients-non-symmetric
case

- Numerics on the Gasket:
non-symmetric case
- Remarks About the

Numerics

- Concluding Remarks

$$
\frac{d \bar{A}}{d t}=-\kappa(t) \bar{A}^{2}
$$

and, using the reaction-diffusion form (with Neumann bcs)

$$
\frac{\partial A}{\partial t}=D \nabla^{2} A-k A^{2} \longrightarrow \frac{d \bar{A}}{d t}=-k \overline{A^{2}}
$$

Equating the two gives:

$$
\kappa(t)=\frac{\overline{A^{2}}}{\bar{A}^{2}} k
$$

Relating the Rate Coefficients

Given the expression:

$$
\kappa(t)=\frac{\overline{A^{2}}}{{\overline{A^{2}}}^{2}} k
$$

We have the inequality (with equality iff A is uniform)

$$
\overline{A^{2}} \geq \bar{A}^{2} \quad \Rightarrow \quad \kappa(t) \geq k
$$

- If, initially, the concentration of A is not uniform, the initial rate will exceed the intrinsic rate
- The intrinsic rate is a lower bound on the observed rate-this excludes the possibility that $\kappa(t) \sim t^{-h}$
- We have not used fractal geometry explicitly here: only that the Gauss-Green formula holds for a suitably defined Laplacian and normal derivative on the Sierpinski Gasket
- The fact that power law behaviour is observed in experiments and in lattice-gas simulations suggests that the discreteness of the reacting entities might be the issue

Rate Coefficients-non-symmetric case

Chemical Processes in Cells

- Molecular Crowding
- Exciton Annihilation

Experiment

- Rate Constants
- The Sierpinski Gasket
- Calculus on the Sierpinski

Gasket

- Numerics on the Gasket:
symmetric case
- Relating the Rate Coefficients
- Relating the Rate Coefficients
- Rate

Coefficients-non-symmetric
case

- Numerics on the Gasket: non-symmetric case
- Remarks About the Numerics
- Concluding Remarks

Now we consider the non-symmetric case:

$$
A+B \rightarrow \text { product }
$$

As before, writing averages with an overline, and using an analogous argument, we get

$$
\kappa(t)=\frac{\overline{A B}}{\bar{A} \bar{B}} k
$$

- The quantity $\overline{A B}$ measures the correlation between the spatial distribution of A and B
- If A and B are uncorrelated, $\overline{A B}=\bar{A} \bar{B}$ and hence $\kappa=k$
- Initially, A and B could well be uncorrelated $\Rightarrow \kappa(0)=k$.
- If the kinetics dominate, A and B become anticorrelated:

$$
\overline{A B}<\bar{A} \bar{B} \quad \Rightarrow \quad \kappa(t)<k
$$

Numerics on the Gasket: non-symmetric case

We solve the system of PDEs (with $k=0.1$ and $D=0.01$):

- Chemical Processes in Cells
- Molecular Crowding - Exciton Annihilation

Experiment

- Rate Constants
- The Sierpinski Gasket
- Calculus on the Sierpinski

Gasket

- Numerics on the Gasket:
symmetric case
- Relating the Rate Coefficients
- Relating the Rate Coefficients
- Rate

Coefficients-non-symmetric
case

- Numerics on the Gasket: non-symmetric case
- Remarks About the

Numerics

- Concluding Remarks

$$
\begin{aligned}
& \frac{\partial A}{\partial t}=D \nabla^{2} A-k A B \\
& \frac{\partial B}{\partial t}=D \nabla^{2} B-k A B
\end{aligned}
$$

Concentrations at Start

Concentrations at End

Remarks About the Numerics

- Chemical Processes in Cells
- Molecular Crowding
- Exciton Annihilation

Experiment

- Rate Constants
- The Sierpinski Gasket
- Calculus on the Sierpinski

Gasket

- Numerics on the Gasket:
symmetric case
- Relating the Rate Coefficients
- Relating the Rate Coefficients
- Rate

Coefficients-non-symmetric
case

- Numerics on the Gasket: non-symmetric case - Remarks About the Numerics
- Concluding Remarks
- This anti-correlation effect (segregation) was predicted by Zeldovich et al in 1978
- It requires the chemistry to act faster than the diffusion and is strongly dependent on dimension-not observed in the steady state in \mathbb{R}^{2} or \mathbb{R}^{3} (Kopelman)
- Can be seen in lower dimensionsdemonstrated using a lattice gas on the Sierpinski Gasket by Kopelman (1989)
- Behaviour entirely consistent with analysis given earlier
- Still not a power law, nor Zipf-Mandlebrot (Schnell and Turner: lattice gas model of Michaelis-Mentin)

$$
\kappa(t)=k \tau /(\tau+t)^{h}
$$

- Our numerics suggest $\kappa(t) \rightarrow \sim t$ at large t

Concluding Remarks

- Continuous dynamics on fractal sets appears to differ in a qualitative way from dynamics based on discrete entities.
- Chemical Processes in Cells
- Molecular Crowding
- Exciton Annihilation

Experiment

- Rate Constants
- The Sierpinski Gasket
- Calculus on the Sierpinski

Gasket

- Numerics on the Gasket:
symmetric case
- Relating the Rate Coefficients
- Relating the Rate Coefficients
- Rate

Coefficients-non-symmetric
case

- Numerics on the Gasket: non-symmetric case
- Remarks About the

Numerics - Concluding Remarks

- Lattice gas type modelling and reaction-diffusion seem complimentary
- We can define and analyse reaction-diffusion models in a class of fractal sets.
- The Sierpinski Gasket
- Analogous sets based on a tetrahedron... generally on an n-simplex.
- Post-critically finite sets
- The behaviour is dependent on the topology of the set rather than a particular embedding and so continuous maps of these sets could be used to model spatial detail.
- Reaction-diffusion models are not dependent on the origin of time, unlike models with time-dependent rate coefficients

