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Chemical Processes in Cells

• When modelling chemical processes in cells, it is usual to
build models which:
• are based on mass action kinetics
• have no spatial structure beyond simple

compartmentalisation

• Is the mass action assumption appropriate?
• the cytoplasm is a very crowded place (5 – 40% of

volume is occupied by macromolecules)
• reactive species can often be extremely dilute

• Experimental techniques are beginning to resolve spatial
detail—perhaps dynamically in the not too distant future

• What can we do about modelling spatio-temporal dynamics
within cells?
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Molecular Crowding

• Molecular crowding has a number
of well-established thermodynamic
consequences

• Here we will be interested in dynam-
ical consequeces:

• The available volume through which
a given molecule can move de-
pends on its size and shape

• Molecules can be effectively con-
fined to low-dimensional spaces
• For example: 1D pores
• Highly ramified (fractal) spaces

• Can we model this mathemati-
cally? What issues need to be ad-
dressed?

Medalia et al Science 298 (2002) 1209

Schnell, Turner Prog.Biophys & Mol.Biol. 85 (2004)
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Exciton Annihilation Experiment
• Experiment used random naphtha-

lene crystals where ∼ 8% mole
fraction was undeuterated.

• Triplet excitons mobile in the un-
deuterated component which
forms a percolating cluster within
the crystal

• Triplets can annihilate when two
collide—naïve mass action kinet-
ics implies the rate of loss of triplet
is proportional to the square of the
triplet concentration.

• Experimentally, however, this ‘con-
stant’ decays in time as a power
law κ(t) ∼ t−h

• The experimental h fits the theoreti-
cal value 1 − ds/2, where ds is the
spectral dimension of the fractal

Kopelman J.Stat.Phys. 42 (1986) 185
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Rate Constants
• Smoluchowski’s theory (1917) is based on computing a

diffusive flux of reactants onto one another

• The observed rate depends on both the intrinsic rate (k) and
the relative diffusion (D) (here R is the distance of closest
approach of the molecules)

κ =
4πDRk

4πDR + k

• It is assumed that chemical concentrations are continuous
functions of space

• The derivation fails in less than 3 dimensions

• We shall assume a reaction-diffusion model of the dynamics.
• The rates will be assumed to be intrinsic
• We will work on a fractal domain—the Sierpinski Gasket
• We are interested in models which give insight into the

role of the complex spatial structures that arise in cells
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The Sierpinski Gasket

• An uncountable, compact, self-similar subset of R
2

• Hausdorff dimension dH = log 3/ log 2 and spectral
dimension ds = log 9/ log 5

• Approximate with a sequence of graphs (Vn, En) whose
vertices become dense in the set

• Vn+1 = f0(Vn) ∪ f1(Vn) ∪ f2(Vn) where fi = (x − pi)/2 + pi

and the pi are three fixed non-colinear points in the plane
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Calculus on the Sierpinski Gasket
• The Laplacian can be constructed

as a renormalised sequence of
graph Laplacians

• A lot is known rigourously about this
operator

• Its spectrum can be found by a dec-
imation process

• A normal derivative (∂n) can also be
defined and then a Gauss-Green
theorem can be proved. From
which if follows that:∫

SG

∇
2A dµ =

∑
V0

∂nA

• Green’s functions can be con-
structed explicitly
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Numerics on the Gasket: symmetric case
• Can we model the exciton experiment using this?

• We solve the following reaction-diffusion equation (with
k = 0.1 and D = 0.01) on the Sierpinski Gasket:

∂A

∂t
= D∇

2A − kA2

• A plot of κ(t) = dA/dt

A
2 (A is the uniform average of A) does

not show a power law—it decays to k
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Relating the Rate Coefficients

Consider this case: A + A → product, and write averages:

A =

∫
SG

Adµ

We have two expressions:

dA

dt
= −κ(t)A

2

and, using the reaction-diffusion form (with Neumann bcs)

∂A

∂t
= D∇

2A − kA2
−→

dA

dt
= −kA2

Equating the two gives:

κ(t) =
A2

A
2

k
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Relating the Rate Coefficients
Given the expression:

κ(t) =
A2

A
2

k

We have the inequality (with equality iff A is uniform)

A2 ≥ A
2

⇒ κ(t) ≥ k

• If, initially, the concentration of A is not uniform, the initial
rate will exceed the intrinsic rate

• The intrinsic rate is a lower bound on the observed rate—this
excludes the possibility that κ(t) ∼ t−h

• We have not used fractal geometry explicitly here: only that
the Gauss-Green formula holds for a suitably defined
Laplacian and normal derivative on the Sierpinski Gasket

• The fact that power law behaviour is observed in
experiments and in lattice-gas simulations suggests that
the discreteness of the reacting entities might be the issue
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Rate Coefficients—non-symmetric case

Now we consider the non-symmetric case:

A + B → product

As before, writing averages with an overline, and using an
analogous argument, we get

κ(t) =
AB

A B
k

• The quantity AB measures the correlation between the
spatial distribution of A and B

• If A and B are uncorrelated, AB = A B and hence κ = k

• Initially, A and B could well be uncorrelated ⇒ κ(0) = k.

• If the kinetics dominate, A and B become anticorrelated:

AB < A B ⇒ κ(t) < k



● Chemical Processes in Cells

● Molecular Crowding

● Exciton Annihilation

Experiment

● Rate Constants

● The Sierpinski Gasket

● Calculus on the Sierpinski

Gasket
● Numerics on the Gasket:

symmetric case

● Relating the Rate Coefficients

● Relating the Rate Coefficients
● Rate

Coefficients—non-symmetric

case
● Numerics on the Gasket:

non-symmetric case
● Remarks About the

Numerics

● Concluding Remarks

Broomhead, Riley, March 29, 2007 Chemistry on a gasket - p. 12/14

Numerics on the Gasket: non-symmetric case
We solve the system of PDEs (with k = 0.1 and D = 0.01):

∂A

∂t
= D∇

2A − kAB

∂B

∂t
= D∇

2B − kAB
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Remarks About the Numerics

• This anti-correlation effect (segregation)
was predicted by Zeldovich et al in 1978

• It requires the chemistry to act faster
than the diffusion and is strongly depen-
dent on dimension—not observed in the
steady state in R

2 or R
3 (Kopelman)

• Can be seen in lower dimensions—
demonstrated using a lattice gas on the
Sierpinski Gasket by Kopelman (1989)

• Behaviour entirely consistent with analysis
given earlier

• Still not a power law, nor Zipf-Mandlebrot
(Schnell and Turner: lattice gas model of
Michaelis-Mentin)

κ(t) = kτ/(τ + t)h

• Our numerics suggest κ(t) →∼ t at large t
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Concluding Remarks

• Continuous dynamics on fractal sets appears to differ in a
qualitative way from dynamics based on discrete entities.

• Lattice gas type modelling and reaction-diffusion seem
complimentary

• We can define and analyse reaction-diffusion models in a
class of fractal sets.
• The Sierpinski Gasket
• Analogous sets based on a tetrahedron. . . generally on

an n-simplex.
• Post-critically finite sets

• The behaviour is dependent on the topology of the set rather
than a particular embedding and so continuous maps of
these sets could be used to model spatial detail.

• Reaction-diffusion models are not dependent on the origin of
time, unlike models with time-dependent rate coefficients
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