Reaction and Diffusion on Fractal Sets

D. S. Broomhead and Caroline Riley The School of Mathematics, The University of Manchester.

Chemical Processes in Cells

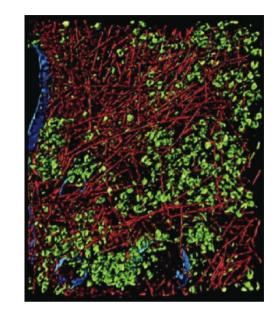
Chemical Processes in Cells

- Molecular Crowding
 Exciton Annihilation
 Experiment
- Rate Constants
- The Sierpinski Gasket
- Calculus on the Sierpinski
 Gasket
- Numerics on the Gasket: symmetric case
- Relating the Rate Coefficients
- Relating the Rate Coefficients
 Rate
- Coefficients—non-symmetric case
- Numerics on the Gasket:
- non-symmetric case
- Remarks About the
- Numerics
- Concluding Remarks

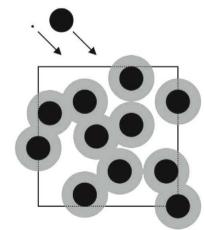
- When modelling chemical processes in cells, it is usual to build models which:
 - are based on mass action kinetics
 - have no spatial structure beyond simple compartmentalisation
- Is the mass action assumption appropriate?
 - the cytoplasm is a very crowded place (5 40% of volume is occupied by macromolecules)
 - reactive species can often be *extremely* dilute
- Experimental techniques are beginning to resolve spatial detail—perhaps dynamically in the not too distant future
- What can we do about modelling spatio-temporal dynamics within cells?

Molecular Crowding

- Molecular crowding has a number of well-established thermodynamic consequences
- Here we will be interested in dynamical consequeces:
- The available volume through which a given molecule can move depends on its size and shape
- Molecules can be effectively confined to low-dimensional spaces
 - For example: 1D pores
 - Highly ramified (fractal) spaces
- Can we model this mathematically? What issues need to be addressed?



Medalia et al Science 298 (2002) 1209



Schnell, Turner Prog.Biophys & Mol.Biol. 85 (2004)

Chemical Processes in Cells

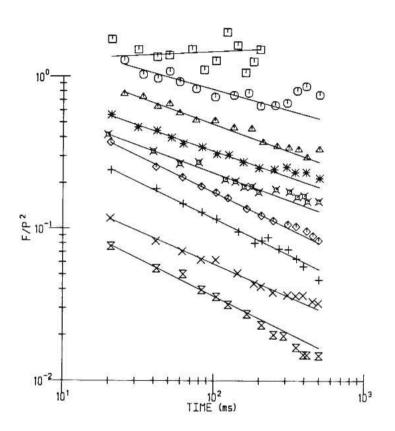
Molecular Crowding

Exciton Annihilation
 Experiment

- Rate Constants
- The Sierpinski Gasket
- Calculus on the Sierpinski
 Gasket
- Numerics on the Gasket: symmetric case
- Relating the Rate CoefficientsRelating the Rate Coefficients
- Rate
- Coefficients—non-symmetric case
- Numerics on the Gasket:
- non-symmetric case • Remarks About the
- Numerics
- Concluding Remarks

Exciton Annihilation Experiment

- Experiment used random naphthalene crystals where $\sim 8\%$ mole fraction was undeuterated.
- Triplet excitons mobile in the undeuterated component which forms a percolating cluster within the crystal
- Triplets can annihilate when two collide—naïve mass action kinetics implies the rate of loss of triplet is proportional to the square of the triplet concentration.
- Experimentally, however, this 'constant' decays in time as a power law $\kappa(t)\sim t^{-h}$
- The experimental h fits the theoretical value $1 d_s/2$, where d_s is the spectral dimension of the fractal



Kopelman J.Stat.Phys. 42 (1986) 185

Exciton Annihilation

Experiment

- Rate Constants
- The Sierpinski Gasket
- Calculus on the Sierpinski
 Gasket
- Numerics on the Gasket: symmetric case
- Relating the Rate Coefficients
 Relating the Rate Coefficients
- Rate
- Coefficients—non-symmetric case
- Numerics on the Gasket:
- non-symmetric case
- Remarks About the
- Numerics • Concluding Remarks

Rate Constants

- Smoluchowski's theory (1917) is based on computing a diffusive flux of reactants onto one another
- The observed rate depends on both the intrinsic rate (k) and the relative diffusion (D) (here R is the distance of closest approach of the molecules)

 $\kappa = \frac{4\pi DRk}{4\pi DR + k}$

- It is assumed that chemical concentrations are continuous functions of space
 - The derivation fails in less than 3 dimensions
 - We shall assume a reaction-diffusion model of the dynamics.
 - The rates will be assumed to be intrinsic
 - We will work on a fractal domain—the Sierpinski Gasket
 - We are interested in models which give insight into the role of the complex spatial structures that arise in cells

Chemical Processes in Cells

Molecular Crowding

Exciton Annihilation

Experiment

Rate Constants

- The Sierpinski Gasket
 Calculus on the Sierpinski
- Gasket
- Numerics on the Gasket: symmetric case
- Relating the Rate Coefficients
- Relating the Rate CoefficientsRate

Coefficients—non-symmetric case

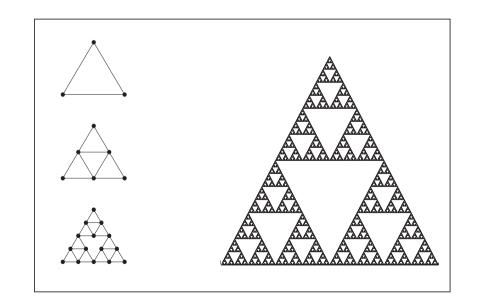
- Numerics on the Gasket:
- non-symmetric case
- Remarks About the

Numerics

Concluding Remarks

The Sierpinski Gasket

- An uncountable, compact, self-similar subset of \mathbb{R}^2
- Hausdorff dimension $d_H = \log 3 / \log 2$ and spectral dimension $d_s = \log 9 / \log 5$
- Approximate with a sequence of graphs (V_n, E_n) whose vertices become dense in the set
- $V_{n+1} = f_0(V_n) \cup f_1(V_n) \cup f_2(V_n)$ where $f_i = (x p_i)/2 + p_i$ and the p_i are three fixed non-colinear points in the plane



- Chemical Processes in Cells
- Molecular Crowding
 Exciton Annihilation
- Experiment
- Rate Constants

The Sierpinski Gasket

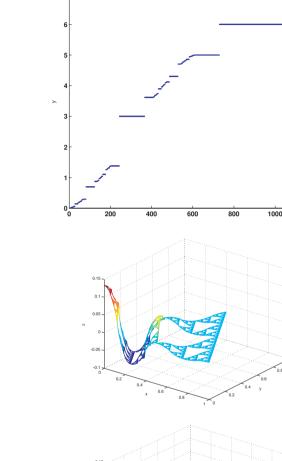
- Calculus on the Sierpinski
 Gasket
- Numerics on the Gasket: symmetric case
- Relating the Rate Coefficients
- Relating the Rate CoefficientsRate
- Coefficients—non-symmetric case
- Numerics on the Gasket:
- non-symmetric caseRemarks About the
- Numerics
- Concluding Remarks

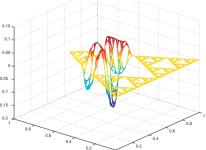
Calculus on the Sierpinski Gasket

- The Laplacian can be constructed as a renormalised sequence of graph Laplacians
- A lot is known rigourously about this operator
- Its spectrum can be found by a decimation process
- A normal derivative (∂_n) can also be defined and then a Gauss-Green theorem can be proved. From which if follows that:

$$\int_{\rm SG} \nabla^2 A \ d\mu = \sum_{V_0} \partial_n A$$

 Green's functions can be constructed explicitly





Chemical Processes in Cells

• Calculus on the Sierpinski

• Numerics on the Gasket:

• Relating the Rate Coefficients

• Relating the Rate Coefficients

Coefficients-non-symmetric

• Numerics on the Gasket: non-symmetric case

Remarks About the

Concluding Remarks

Molecular Crowding
 Exciton Annihilation

ExperimentRate ConstantsThe Sierpinski Gasket

Gasket

Rate

case

Numerics

symmetric case

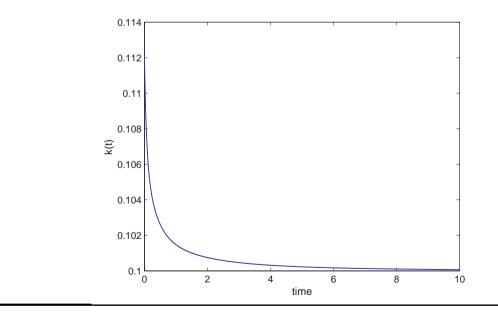
1200

Numerics on the Gasket: symmetric case

- Can we model the exciton experiment using this?
- We solve the following reaction-diffusion equation (with k = 0.1 and D = 0.01) on the Sierpinski Gasket:

$$\frac{\partial A}{\partial t} = D\nabla^2 A - kA^2$$

• A plot of $\kappa(t) = \frac{d\overline{A}/dt}{\overline{A}^2}$ (\overline{A} is the uniform average of A) does not show a power law—it decays to k



Chemical Processes in Cells

- Molecular Crowding
- Exciton Annihilation Experiment
- Rate Constants
- The Sierpinski Gasket
- Calculus on the Sierpinski
 Gasket

• Numerics on the Gasket: symmetric case

- Relating the Rate Coefficients
- Relating the Rate Coefficients
- Rate
- Coefficients-non-symmetric
- case
- Numerics on the Gasket:
- non-symmetric case
- Remarks About the
- Numerics
- Concluding Remarks

Relating the Rate Coefficients

Consider this case: $A + A \rightarrow$ product, and write averages:

Chemical Processes in Cells

Molecular Crowding

• Exciton Annihilation Experiment

Rate Constants

The Sierpinski Gasket

 Calculus on the Sierpinski Gasket

• Numerics on the Gasket: symmetric case

• Relating the Rate Coefficients

Relating the Rate CoefficientsRate

Coefficients-non-symmetric

case

• Numerics on the Gasket:

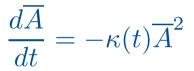
non-symmetric case

• Remarks About the

Numerics

Concluding Remarks

 $\overline{A} = \int_{\rm SG} A d\mu$



and, using the reaction-diffusion form (with Neumann bcs)

$$\frac{\partial A}{\partial t} = D\nabla^2 A - kA^2 \longrightarrow \frac{d\overline{A}}{dt} = -k\overline{A^2}$$

Equating the two gives:

We have two expressions:

$$\kappa(t) = \frac{\overline{A^2}}{\overline{A}^2} \ k$$

Broomhead, Riley, March 29, 2007

Relating the Rate Coefficients

Given the expression:

- Chemical Processes in Cells
- Molecular Crowding
- Exciton Annihilation
 Experiment
- Rate Constants
- The Sierpinski Gasket
- Calculus on the Sierpinski
 Gasket
- Numerics on the Gasket: symmetric case
- Relating the Rate Coefficients
- Relating the Rate Coefficients
 Rate
- Coefficients—non-symmetric case
- Numerics on the Gasket:
- non-symmetric case
- Remarks About the
- Numerics • Concluding Remarks

We have the inequality (with equality iff A is uniform)

 $\overline{A^2} \ge \overline{A}^2 \quad \Rightarrow \quad \kappa(t) \ge k$

- If, initially, the concentration of A is not uniform, the initial rate will exceed the intrinsic rate
- The intrinsic rate is a lower bound on the observed rate—this excludes the possibility that $\kappa(t)\sim t^{-h}$
- We have not used fractal geometry explicitly here: only that the Gauss-Green formula holds for a suitably defined Laplacian and normal derivative on the Sierpinski Gasket
- The fact that power law behaviour is observed in experiments and in lattice-gas simulations suggests that the discreteness of the reacting entities might be the issue

$$\kappa(t) = \frac{A^2}{\overline{A}^2} k$$

10

Rate Coefficients—non-symmetric case

Now we consider the non-symmetric case:

 $A+B \to \mathrm{product}$

As before, writing averages with an overline, and using an analogous argument, we get

$$\kappa(t) = \frac{\overline{AB}}{\overline{A}\ \overline{B}}\ k$$

- The quantity \overline{AB} measures the correlation between the spatial distribution of A and B
- If A and B are uncorrelated, $\overline{AB} = \overline{A} \ \overline{B}$ and hence $\kappa = k$
- Initially, A and B could well be uncorrelated $\Rightarrow \kappa(0) = k$.
- If the kinetics dominate, A and B become anticorrelated:

$$\overline{AB} < \overline{A} \ \overline{B} \quad \Rightarrow \quad \kappa(t) < k$$

Chemical Processes in Cells

Molecular Crowding

• Exciton Annihilation Experiment

Rate Constants

The Sierpinski Gasket

Calculus on the Sierpinski
 Gasket

• Numerics on the Gasket: symmetric case

Relating the Rate Coefficients

Relating the Rate CoefficientsRate

Coefficients—non-symmetric case

Numerics on the Gasket:

non-symmetric case

• Remarks About the

Numerics

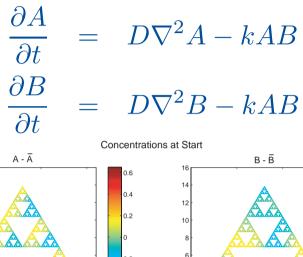
Numerics on the Gasket: non-symmetric case

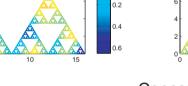
We solve the system of PDEs (with k = 0.1 and D = 0.01):

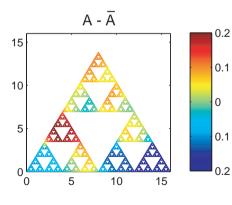
- Chemical Processes in Cells
- Molecular Crowding
- Exciton Annihilation
- Experiment
- Rate Constants
- The Sierpinski Gasket
- Calculus on the Sierpinski
 Gasket
- Numerics on the Gasket: symmetric case
- Relating the Rate Coefficients
- Relating the Rate Coefficients
- Rate
- Coefficients-non-symmetric

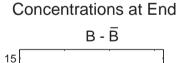
case

- Numerics on the Gasket: non-symmetric case
- Remarks About the
- Numerics
- Concluding Remarks







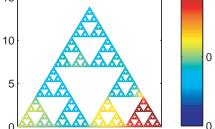


0.4

0.2

0.2

04

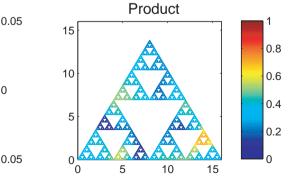


10

15

5

'n

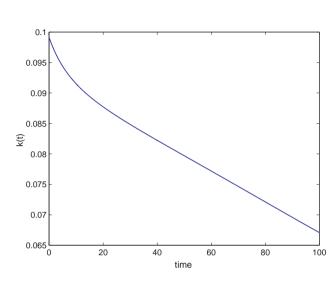


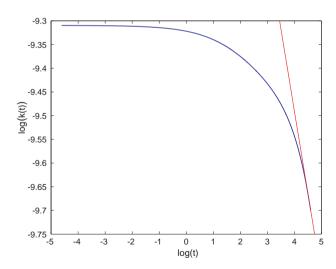
Remarks About the Numerics

- This anti-correlation effect (segregation) was predicted by Zeldovich et al in 1978
- It requires the chemistry to act faster than the diffusion and is strongly dependent on dimension—not observed in the steady state in R² or R³ (Kopelman)
 - Can be seen in lower dimensions demonstrated using a lattice gas on the Sierpinski Gasket by Kopelman (1989)
 - Behaviour entirely consistent with analysis given earlier
- Still not a power law, nor Zipf-Mandlebrot (Schnell and Turner: lattice gas model of Michaelis-Mentin)

$$\kappa(t) = k\tau/(\tau+t)^h$$

• Our numerics suggest $\kappa(t) \rightarrow \sim t$ at large t





Exciton Annihilation
 Experiment

Chemical Processes in Cells

- Rate Constants
- The Sierpinski Gasket

Molecular Crowding

- Calculus on the Sierpinski Gasket
- Numerics on the Gasket: symmetric case
- Relating the Rate Coefficients
- Relating the Rate CoefficientsRate
- Coefficients—non-symmetric case
- Numerics on the Gasket:
- non-symmetric case

 Remarks About the Numerics

Concluding Remarks

Concluding Remarks

- Continuous dynamics on fractal sets appears to differ in a qualitative way from dynamics based on discrete entities.
- Lattice gas type modelling and reaction-diffusion seem complimentary
- We can define and analyse reaction-diffusion models in a class of fractal sets.
 - The Sierpinski Gasket
 - Analogous sets based on a tetrahedron...generally on an n-simplex.
 - Post-critically finite sets
- The behaviour is dependent on the topology of the set rather than a particular embedding and so continuous maps of these sets could be used to model spatial detail.
- Reaction-diffusion models are not dependent on the origin of time, unlike models with time-dependent rate coefficients

- Chemical Processes in Cells
- Molecular CrowdingExciton Annihilation
- Experiment
- Rate Constants
- The Sierpinski Gasket
- Calculus on the Sierpinski Gasket
- Numerics on the Gasket: symmetric case
- Relating the Rate Coefficients
- Relating the Rate Coefficients
 Rate
- Coefficients—non-symmetric case
- Numerics on the Gasket:
- non-symmetric caseRemarks About the
- Numerics

Concluding Remarks