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Cluster ensemble as optimization problem

 Data set X = {x1, x2, …, xn} of n patterns

 A cluster ensemble is a set P = {P1, P2, …, PN}, where Pi is a 

clustering of X

 Denote the set of all possible clusterings of X by PX

 Cluster ensemble as median partition problem:

d(): distance (dissimilarity) function between two clusterings
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Cluster ensemble as optimization problem

 Cluster ensemble as median partition problem:

 This is a difficult optimization problem

 Approximate methods  How good is the suboptimal solution?

 Simple solution only for trivial distance functions

 For several distance functions it turns out to be NP-complete 

(seems to be proved that P != NP)

 Also for other distance functions no efficient solutions are known
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Illustratation: How good is a local minimum?

 Goodness of local minimum LM

f(LM) – f(GM)

 Estimation of goodness

f(LM) – T

based on lower bound T with

f(x) >= T
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Illustratation: How good is a local minimum?

 Lower bound T = 0 not useful

 But given some tight lower 

bound T

f(LM) – T

is a good option for measuring 

the goodness of local minimum 
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Lower bound für median partition problem

 Median partition problem is an instance of generalized median 

problem (appplicable to any object domains)

 Lower bound T for generalized median problem in metric space  

based on linear programming (Jiang & Bunke, SSPR 2002):

 It turns out to be tight in several other contexts
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Experimental results

 Metric distance functions

 Variance of information

 van Dongen metric

 Mirkin metric

 Cluster ensemble methods

 Evidence accumulation method (Fred & Jain, PAMI 2005)

 Random walker based method (Abdala et al. ICPR 2010)

 Data sets

 Nine UCI data sets

 Two articial data sets
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Experimental results

Optimization function Lower bound
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Experimental results

 For three data sets (Haberman, Mammo, and 2D2K) the lower bound 

T is almost reached for all three distance functions

 practically no room for improvement

 If the deviation is large, we must be careful in making any claims

 The lower bound is not tight enough in that particular case

 The computed solution is still far away from the (unknown) 

optimal solution

Larger deviation may indicate some, although uncertain, potential of 

improvement and thus serves as a hint for continuing optimization.
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Additional contents of the paper

 Merkin distance: General lower bound T is almost as good as with 

domain-specific lower bound

 Extension to weighted cluster ensemble techniques

 Extension to quasi-metric distance functions

Conclusion: The lower bound T may be considered as a means of 

exploring the performance limit of cluster ensemble techniques
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Experimental results

What is a good consensus function for ensemble clustering?

What is a good weighting scheme for a particular consensus function?

 How to assess to which extent a suboptimal algorithm has found        

a good consensus solution? 

 A tighter lower bound for the ensemble clustering problem?

 Lower bound for non-metric distance function?

 Other options for evaluating the quality of a consensus partition 


