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Cluster ensemble as optimization problem

= Data set X = {Xq, X,, ..., X} of n patterns

= A cluster ensembleisaset P = {P,, P,, ..., Py}, where P, is a
clustering of X

= Denote the set of all possible clusterings of X by P

= Cluster ensemble as median partition problem:

N

P* = a,ranelglx d(P, P;)

1=

d(): distance (dissimilarity) function between two clusterings
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Cluster ensemble as optimization problem

= Cluster ensemble as median partition problem:
N

P* = arg Pnel‘glx d(P, P;)

= This is a difficult optimization problem

v" Simple solution only for trivial distance functions

v" For several distance functions it turns out to be NP-complete
(seems to be proved that P !'= NP)

v Also for other distance functions no efficient solutions are known

- Approximate methods - How good is the suboptimal solution?
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lllustratation: How good is a local minimum?

= Goodness of local minimum LM

(%) f(LM) — f(GIM)
1 Initialization
= Estimation of goodness

f(LM) =T
based on lower bound T with

f(x)>=T
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lllustratation: How good is a local minimum?

= L ower bound T = 0 not useful

= But given some tight lower
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Lower bound fur median partition problem

= Median partition problem is an instance of generalized median
problem (appplicable to any object domains)

» Lower bound T for generalized median problem in metric space
based on linear programming (Jiang & Bunke, SSPR 2002):

minimize r1 + x2 + - - - + rn subject to

(v +a; > d(P;, P))
Vi,jE{l,Q,...,N}, Z%ja < x%_l_d(P%an) = L j
\.I'j —I—d(PZ,PJ) Z £z

V?:E{l,Q,...,N}, r; =0

= |t turns out to be tight in several other contexts
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Experimental results

= Metric distance functions
v Variance of information
v van Dongen metric
v Mirkin metric

= Cluster ensemble methods
v" Evidence accumulation method (Fred & Jain, PAMI 2005)
v" Random walker based method (Abdala et al. ICPR 2010)

= Data sets
v" Nine UCI data sets
v" Two articial data sets
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Experimental results

Random walker based method RW

o dyq dm,
dataset [|[SOD(P) A (%)||SOD(P)| I'A"(%)||SOD(P) A (%)
Iris 8.40| 7.24| 13.8 2.28(2.16 5.2 28067 25113 10.5
Wine 2.09] 1.861 10.0 0.35(0.33 4.5 7242 6777 5.8
Breast 1.49 1.08| 27.7 0.20(0.15] 23.9 90032 68392 24.0
Optic 11.38| 6.37| 44.0 3.90{1.85| 50.9|| 749459| 315016| 5H7.7
Soy 6.19] 3.791 36.9 4.08(1.62| 52.0 3433 1591 49.3
Glass 7.96| 4.66| 41.1 2.5311.24| 45.9 69186 33940| 49.3
Haberman 7.70] 7.58 1.5 2.806(2.84 0.7(] 234484 232995 0.6
Mammo 1.77( 1.77 0.0 0.38(0.38 0.0 248650| 248650 0.0
Yeast 18.60|11.40( 38.2 10.5113.34| 67.5[|6606869|3010185| 53.4
2D2K 4.69| 4.69 0.0 1.15(1.15 0.0 978050 978050 0.0
SDoK 0.24| 4.91 0.Y 2.A3T.66| I5.0| 721412 579262 1T.3

I

'\

Lower bound

Optimization function
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Experimental results

= For three data sets (Haberman, Mammo, and 2D2K) the lower bound
T is almost reached for all three distance functions
—> practically no room for improvement

= If the deviation Is large, we must be careful in making any claims
v The lower bound is not tight enough in that particular case

v The computed solution is still far away from the (unknown)
optimal solution

Larger deviation may indicate some, although uncertain, potential of
improvement and thus serves as a hint for continuing optimization.
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Additional contents of the paper

= Merkin distance: General lower bound T is almost as good as with
domain-specific lower bound

= Extension to weighted cluster ensemble techniques

P* =
o g Y-l

= Extension to auasi-metric distance functions

d(P, Q)
1 +¢

d(P.R) +d(R,Q)

Conclusion: The lower bound T may be considered as a means of
exploring the performance limit of cluster ensemble techniques
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Experimental results

= What is a good consensus function for ensemble clustering?

= What is a good weighting scheme for a particular consensus function?

= How to assess to which extent a suboptimal algorithm has found
a good consensus solution?

= A tighter lower bound for the ensemble clustering problem?
= Lower bound for non-metric distance function?

= Other options for evaluating the quality of a consensus partition
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