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Cluster ensemble as optimization problem

 Data set X = {x1, x2, …, xn} of n patterns

 A cluster ensemble is a set P = {P1, P2, …, PN}, where Pi is a 

clustering of X

 Denote the set of all possible clusterings of X by PX

 Cluster ensemble as median partition problem:

d(): distance (dissimilarity) function between two clusterings
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Cluster ensemble as optimization problem

 Cluster ensemble as median partition problem:

 This is a difficult optimization problem

 Approximate methods  How good is the suboptimal solution?

 Simple solution only for trivial distance functions

 For several distance functions it turns out to be NP-complete 

(seems to be proved that P != NP)

 Also for other distance functions no efficient solutions are known
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Illustratation: How good is a local minimum?

 Goodness of local minimum LM

f(LM) – f(GM)

 Estimation of goodness

f(LM) – T

based on lower bound T with

f(x) >= T
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Illustratation: How good is a local minimum?

 Lower bound T = 0 not useful

 But given some tight lower 

bound T

f(LM) – T

is a good option for measuring 

the goodness of local minimum 
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Lower bound für median partition problem

 Median partition problem is an instance of generalized median 

problem (appplicable to any object domains)

 Lower bound T for generalized median problem in metric space  

based on linear programming (Jiang & Bunke, SSPR 2002):

 It turns out to be tight in several other contexts
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Experimental results

 Metric distance functions

 Variance of information

 van Dongen metric

 Mirkin metric

 Cluster ensemble methods

 Evidence accumulation method (Fred & Jain, PAMI 2005)

 Random walker based method (Abdala et al. ICPR 2010)

 Data sets

 Nine UCI data sets

 Two articial data sets



S+SSPR, Cesme, Turkey, 2010 – p. 8

Experimental results

Optimization function Lower bound
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Experimental results

 For three data sets (Haberman, Mammo, and 2D2K) the lower bound 

T is almost reached for all three distance functions

 practically no room for improvement

 If the deviation is large, we must be careful in making any claims

 The lower bound is not tight enough in that particular case

 The computed solution is still far away from the (unknown) 

optimal solution

Larger deviation may indicate some, although uncertain, potential of 

improvement and thus serves as a hint for continuing optimization.
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Additional contents of the paper

 Merkin distance: General lower bound T is almost as good as with 

domain-specific lower bound

 Extension to weighted cluster ensemble techniques

 Extension to quasi-metric distance functions

Conclusion: The lower bound T may be considered as a means of 

exploring the performance limit of cluster ensemble techniques
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Experimental results

What is a good consensus function for ensemble clustering?

What is a good weighting scheme for a particular consensus function?

 How to assess to which extent a suboptimal algorithm has found        

a good consensus solution? 

 A tighter lower bound for the ensemble clustering problem?

 Lower bound for non-metric distance function?

 Other options for evaluating the quality of a consensus partition 


