On Consensus Clustering Validation

João M. M. Duarte¹² Ana L. N. Fred¹ André Lourenço¹ F. Jorge F. Duarte²

¹ Instituto de Telecomunicações, Instituto Superior Técnico, Lisboa, Portugal

² GECAD - Knowledge Engineering and Decision Support Group, Instituto Superior de Engenharia do Porto, Porto, Portugal

Outline

Motivation

- 2 Consensus Clustering Validation
- 3 Statistical Validity Index based on Pairwise Similarity

4 Experimental Results

Cluster Ensembles

- Clustering ensemble approaches have been proposed aiming:
 - to improve data clustering robustness and quality;
 - reuse clustering solutions;
 - cluster data in a distributed way.
- There are many alternative ways of building the clustering ensemble, defining the combination strategy and extraction algorithm, and choosing the final number of clusters.

Motivation

Consensus Clustering Validation Statistical Validity Index based on Pairwise Similarity Experimental Results Conclusions

Cluster Ensembles (2)

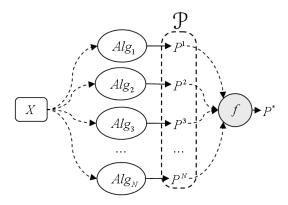


Figure: Combining multiple data partitions

How To Validate Consensus Partitions?

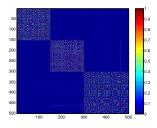
- For a given data set, which consensus clustering solution should be selected?
- We propose the validation of clustering combination results at three levels:
 - original data representation
 - clustering ensemble level
 - learned pairwise similarity

Consensus Clustering Validation

- Usually, the assessment of the quality of a consensus partition, P*, is performed:
 - on the original data space evaluates a data partition using an utility/cost function usually measuring intra-cluster compactness and inter-cluster data patterns separation (e.g. Silhouette, Dunn's, Davies-Bouldin indices), or
 - on the clustering ensemble space rely on the agreement between the consensus partition and the partitions in the clustering ensemble (e.g. ANMI, ACC indices).

Validation on the Similarity Space

- We propose to validate *P*^{*} on a learned similarity space:
 - similarities between data patterns are induced from the clustering ensemble using the EAC method - the co-association matrix is used as a similarity matrix;



$$\mathbf{C}_{ij} = \frac{\sum_{l=1}^{N} vote_{ij}^{l}}{N},$$

where $vote_{ij}^{l}$ means that x_i and x_j belong to the same cluster cluster.

 modifications to the Silhouette, Dunn's, and Davies-Bouldin indices were performed.

Statistical Validity Index based on Pairwise Similarity

- We propose a new validity measure inspired in the Parzen window density estimation technique.
- The likelihood of the data X given a partition P, is defined as:

$$L(\mathcal{X}|P) = \prod_{i=1}^{N} p(x_i|P), \quad p(x_i|P) = \sum_{k=1}^{K} p(x_i|C_k \in P) \cdot \Pr(C_k).$$

Statistical Validity Index based on Pairwise Similarity

 Following the idea behind the Parzen-window density estimation method, we define:

$$p(x_i|C_k) = \frac{K_N}{|C_k| \cdot V_k(x_i)}$$
(1)

Since we rely only on pairwise similarities, we approximate V_k(x_i) by a quantity proportional to it:

$$V_k(x_i) \triangleq \operatorname{diam}_k(x_i), \quad \operatorname{diam}_k(x_i) = 2\left(1 - \min_{x_j \in KNN_k(x_i)} \mathbf{C}_{ij}\right)$$
(2)

• Using previous equations and estimating $Pr(C_k)$ as $\frac{1}{n}|C_k|$:

$$L(\mathcal{X}|P) = \prod_{i=1}^{N} \sum_{k=1}^{K} \frac{K_{N}}{n \cdot V_{k}(x_{i})}.$$
(3)

Data Sets

- Five real data sets available at the UCI repository:
 - Iris, Std Yeast, Optdigits, House Votes and Wine;
- Nine synthetic data sets

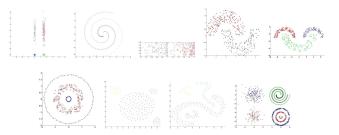


Figure: Synthetic data sets.

Experimental Setup

- Two different methods were used to build the CEs using K-means algorithm and producing 150 data partitions:
 - A with exactly K = 20 clusters for Iris data set, K = 50 for Concentric data set, K = 120 for Complex data set and K = 30 for all the other data sets;
 - **B** was randomly chosen to be an integer in the interval [10 : 30].

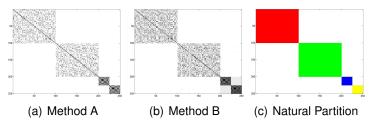


Figure: Co-association matrices

Results

Figure: $NMI(P^*, P^0)$ for the consensus selected by each validity measure.

	Clustering Ensemble Construction Method A											Clustering Ensemble Construction Method B										
Data Set	L_o	S_{o}	D_o	DB_o	L_s	S_s	D_s	DB_s	ANMI	ACC	Best	L_o	S_{o}	D_o	DB_o	L_s	S_s	D_s	DB_s	ANMI	ACC	Best
Iris	0.81	0.81	0.71	0.71	0.81	0.81	0.71	0.81	0.81	0.81	0.81	0.81	0.81	0.72	0.72	0.81	0.81	0.72	0.72	0.81	0.81	0.81
Std Yeast	0.49	0.49	0.08	0.53	0.49	0.53	0.24	0.08	0.49	0.49	0.53	0.48	0.48	0.37	0.32	0.48	0.53	0.23	0.48	0.48	0.48	0.53
Optdigits	0.81	0.81	0.71	0.63	0.81	0.81	0.63	0.81	0.81	0.81	0.81	0.81	0.83	0.83	0.72	0.81	0.81	0.72	0.83	0.81	0.83	0.83
House Votes	0.50	0.50	0.03	0.03	0.50	0.14	0.14	0.14	0.50	0.50	0.50	0.49	0.49	0.02	0.49	0.49	0.49	0.14	0.14	0.49	0.49	0.49
Wine	0.77	0.77	0.66	0.08	0.77	0.66	0.08	0.66	0.77	0.77	0.77	0.77	0.80	0.06	0.17	0.80	0.77	0.17	0.06	0.77	0.77	0.80
Cigar	1.00	1.00	1.00	0.23	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.84	1.00	1.00	1.00	0.84	1.00	0.38	1.00	0.84	0.84	1.00
Spiral	1.00	0.00	0.05	0.05	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.01	0.01	0.08	0.08	0.01	0.01	1.00	1.00	0.01	0.01	1.00
Bars	0.94	0.94	0.06	0.06	0.94	0.94	0.06	0.94	0.94	0.94	0.94	0.94	0.94	0.21	0.21	0.94	0.94	0.21	0.21	0.94	0.94	0.94
2 Half Rings	0.99	0.99	0.17	0.17	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.87	0.99	0.21	0.21	0.87	0.87	0.99	0.99	0.87	0.87	0.99
3 Half Rings	1.00	1.00	0.08	0.08	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Concentric	1.00	1.00	0.09	0.09	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.70	1.00	0.14	0.14	0.70	0.70	1.00	1.00	0.70	0.70	1.00
D1	1.00	1.00	1.00	0.05	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.40	1.00	1.00	1.00	0.40	1.00	1.00	1.00	1.00	1.00	1.00
D2	1.00	1.00	0.14	0.14	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.57	0.71	0.34	0.34	0.57	0.57	1.00	1.00	0.71	0.71	1.00
Complex	0.83	0.44	0.83	0.44	0.83	0.83	0.82	0.82	0.83	0.83	0.83	0.70	0.70	0.70	0.63	0.70	0.63	0.56	0.70	0.70	0.70	0.87
#Best criterion	13	11	3	1	13	11	7	10	12	12		5	11	5	4	6	7	6	9	6	7	

- K_N was defined as $\lceil \sqrt{n} \rceil$.
- Consensus partitions were produced by Average-Link, Single-Link, Complete-Link and Ward's-Link algorithms.

Conclusions

- The learned similarity-based criteria can be used instead of the traditional CE measures;
- The similarity-based criteria are a good option when the original data representation is not available;
- The proposed validity measure is a good choice for consensus clustering validation when the clusters belonging to the CE are not likely to contain patterns of different "natural" clusters.

Questions/Challenges

- How to choose between consensus partitions with different the number of clusters?
- How to assess the quality of a clustering ensemble?
- How to address the validation of overlapping clusterings?