Emergent Semantics: Rethinking Interoperability for Large Scale Decentralized Information Systems

Philippe Cudré-Mauroux

Computer Science & Artificial Intelligence Lab Massachusetts Institute of Technology

Outline

- 1. Introduction
 - 1.1. Semantic Interoperability in the Internet Era
 - 1.2. Peer Data Management Systems (PDMSs)
 - 1.3. Syntactic Semantics
- 2. Methods
 - 2.1. Semantic Gossiping
 - 2.2. Graph-Theoretic Semantic Interoperability
- 3. Systems
 - 3.1. GridVine: A P2P Semantic Overlay Network
 - 3.2. idMesh: Disambiguation of Linked Data
- 4. Conclusions
- breadth rather than depth

Introduction

Interoperability in the Internet Era

Searching semantically richer objects in large scale heterogeneous networks

date?

<xap:CreateDate>2001-12-19T18

:49:03Z</xap:CreateDate>

<xap:ModifyDate>2001-12-19T2

0:09:28Z</xap:ModifyDate>

<es:DofCreation> **05/08/2004** </es:DofCreation>

<myRDF:Date> Jan 1, 2005 </myRDF:Date>

Lack of semantic interoperability

On Information Heterogeneity

Syntactic discrepancies

ImageGUID	cDate
A0657B25	05.08.04

<es:cDate> **05/08/2004** </es:cDate>

- Semantic heterogeneity
 - All the aforementioned standards are extensible

```
<rdf:Property rdf:ID="width">
<rdfs:label>Width</rdfs:label>
<rdfs:subPropertyOf rdf:resource="#length"/>
</rdf:Property>
```


<rdf:Property rdf:ID="Length-Y"> <rdfs:label>Length-Y</rdfs:label> <rdfs:subPropertyOf rdf:resource="#length"/> </rdf:Property>

Shared representation is *not* enough

Integrating Data in Distributed Databases

■ The Wrapper-Mediator architecture

Integrating Data in the new Web Ecology

	Distributed Databases	Large Scale Information Systems (e.g., WWW))
Scale	Number of sources < 100	Number of sources > 1000
Uncertainty	Consistent Data - Coordination - Manually curated data Schemas created by administrators	Uncertain Data - Autonomy - Semi-automatic creation of data Schemas created by end users
Dynamicity	Relatively stable set of sources - stable mediator Sources known a priori	Network churn - node failures Unknown sources
Expressivity	Relational Data Structured Schemas - Integrity constraints Structured Queries	Semi-structured data Schematas - No integrity constraints Simple S-P Queries

Opportunity: P2P Architectures

- Scalability (decentralized architectures)
- Autonomy (self-organization)
- Robustness (adaptivity, no single point of failure)

Decentralized Interoperability

```
01=
                                                     <GUID>$p/GUID</GUID>
<GUID>$p/GUID</GUID>
FOR $p IN /Photoshop Image
                                                     FOR $p IN T12
                                                     WHERE $p/Creator LIKE "%Robi%"
WHERE $p/Creator LIKE "%Robi%"
  Photoshop
                                                                       WinFS
  (own schema)
                                                                 (known schema)
<Photoshop Image>
                                                              <WinFSImage>
 <GUID>178A8CD8865</GUID>
                                                               <GUID>178A8CD8866</GUID>
  <Creator>Robinson</Creator>
                                                               <Author>
  <Subject>
                                                                <DisplayName>
  <Bag>
                                                                Henry Peach Robinson
                          <Photoshop Image>
   <Item>
                                                                <DisplayName>
                           <GUID>$fs/GUID</GUID>
    Tunbridge Wells
                                                                <Role>Photographer</Role>
   </Item>
                           <Creator>
                                                               <Author>
   <Item>Royal Council
                            $fs/Author/DisplayName
                                                               <Keyword>
  </Bag>
                           </Creator>
                                                               Tunbridge
  </Subject>
                                                               </Keyword>
                          </Photoshop Image>
                                                               <Keyword>Council</Keyword>
                          FOR $fs IN /WinFSImage
</Photoshop Image>
                                                              </WinFSImage>
```


Peer Data Management Systems

date?

<es:cDate> 05/08/2004 </es:cDate>

<xap:CreateDate>2001-12-19T1
8:49:03Z</xap:CreateDate>
<xap:ModifyDate>2001-12-19T2
0:09:28Z</xap:ModifyDate>

- Pairwise mappings
 - Peer Data Management Systems (PDMS)
- Local mappings overcome global heterogeneity
 - Iterative query reformulation

Emergent Semantics (1)

- Contrary to the wrapper-mediator architecture, no definite, global semantics defined a priori
 - What is the resulting semantics of the overall system?
- Long-standing debate:"What is semantics?"
 - Standard response: "Mapping of a syntactic structure into a semantic domain"

Semantic Grounding

- The meaning of symbols can be explained by its semantic correspondences to other symbols alone ["Understanding understanding" Rapaport 93]
 - Type 1 semantics: understanding in terms of something else
 - Problem: how to ground semantics?
 - Type 2 semantics: understanding something in terms of itself
 - "syntactic semantics": grounding through recursive understanding

Emergent Semantics (2)

- Emergent Semantics:
 - Semantics as a posteriori agreements on conceptualizations
 - Semantics of symbols as recursive correspondences to other symbols
 - Analyzing transitive closures of mappings
 - Self-organizing, bottom-up approach
 - Global semantics (stable states) emerging from multiple local interactions
 - Syntactic semantics
 - Studying semantics from a syntactic perspective

Problems (1/2): Precision / Recall

- Semantic Query routing
 - To whom shall I forward a query posed against my local schema?
- Some (most) mappings will be (partially) faulty
 - Low expressive power of mappings
 - samePropertyAs / sameClassAs / subclassOf
 - ... or event worse (Microformats)
 - Automatic schema alignment techniques
 - Different views on conceptualizations
- Local query resolution
 - Low recall
- Flooding
 - Low precision
- Standard deductive integration is not sufficient
 - Uncertainty on mappings and conceptualizations

Problems (2/2): Global Interoperability

- What is the global impact of local actions?
 - Issuing a query locally
 - Diffusion on the global scale
 - cf. precision/recall
 - Creating local mappings
 - Mapping scarcity
 - Semantic partitions
 - Mapping abundance
 - Mapping Quality
 - Computational overhead
 - Network overhead
- Model encompassing interoperability at global scale.

Methods

Semantic Gossiping

- Local, selective and query-specific forwarding paradigm
 - Mapping completeness
 - Capability of reformulating arbitrary queries
 - Lost predicates
 - Syntactic analysis
 - Mapping soundness
 - Capability of reformulating queries in semantically correct ways
 - Agreements on conceptualizations
 - Semantic analyses
- Self-organization of query diffusion
 - Precision/Recall tradeoff

Syntactic Analysis

- Measure the syntactic losses in successive query reformulations (mapping completeness)
 - attributes lost in the projections
 - \blacksquare π Title, Format, Length $\to \pi$ Format, Length $\to \pi$ Length $\to \dots$
 - predicates lost in the selections
 - σ Title="The Vitruvian Man", Year < 1600 $\rightarrow \sigma$ Year < 1600 $\rightarrow \dots$
- Losses can have various impacts
 - Selectivity of the selection predicates
 - Query-dependent weights of the attributes
- Losses aggregated in two similarity values

Semantic Analyses (1/2)

- Measure the semantic losses in successive query reformulations (mapping soundness)
- Cycle analysis: agreement on conceptualizations derived through transitive closure of mapping operations

Semantic Analyses (2/2)

 Derive likelihood on mapping soundness from multiple feedback cycles

$$P(f_{\circlearrowright}^+|m=1) = (1 - \epsilon_{cyc})^{\|f_{\circlearrowright}\|-1} + (1 - (1 - \epsilon_{cyc})^{\|f_{\circlearrowright}\|-1})\delta_{cyc})$$

$$P(m=1|\mathbf{f}_{\circlearrowright}) = K \ P(m=1)$$

$$\prod_{\substack{f_{\circlearrowleft}^{+} \in \mathbf{f}_{\circlearrowleft}^{+}}} P(f_{\circlearrowleft}^{+})^{-1} P(f_{\circlearrowleft}^{+}|m=1) \prod_{\substack{f_{\circlearrowleft}^{-} \in \mathbf{f}_{\circlearrowleft}^{-}}} P(f_{\circlearrowleft}^{-})^{-1} P(f_{\circlearrowleft}^{-}|m=1)$$

- Similar analysis for returned results
 - Agreements on document classification
- Iteratively update a semantic similarity value along with the reformulations

$$\blacksquare 0 \le SIM_{\circlearrowright|\rightleftarrows}(q, (\mu_n \circ \ldots \circ \mu_1)(q)) \le 1$$

Semantic Gossiping: Per-Hop Forwarding

- \blacksquare Query specific thresholds on similarities SIM_{τ}
 - User / System generated
 - Reformulate query through mapping if $SIM_{q'} \ge SIM_{\tau}$
 - If $SIM_{\tau\pi} = SIM_{\tau\sigma}$ = 1 : use complete reformulations only

Self-Healing Semantic Networks

Combined Analysis (random graph, 4 att., 25 schemas, TTL=6 (cycle)/3(results), 10 consecutive runs)

Graph-Theoretic Semantic Interoperability

- What about interoperability at a global scale?
- Modeling semantic interoperability:

Schema-to-Schema Graph

- Logical model
- Directed
- Weighted
- Redundant

- The semantic connectivity graph
 - Idea: as for physical network analyses, define a connectivity layer
 - Unweighted, non-redundant version of the Schema-to-Schema graph

Semantic Interoperability in the Large

Definition

Peers in a set P_s are semantically interoperable iff S_s is strongly connected, with $S_s = \{s \mid \exists p \in P_s, p \leftrightarrow s\}$

- Observation 1 A set of peers P_s cannot be semantically interoperable if |E_s| < |V_s|
- Observation 2 A set of peers P_s is semantically interoperable if $|E_s| > |V_s| (|V_s|-1) - (|V_s|-1)$
- What happens between those two bounds?
 - What is the proportion of interoperable systems?

A Necessary Condition for Semantic Interoperability in the Large

- Analyzing semantic interoperability in large-scale, decentralized networks
 - Percolation theory for directed graphs
 - Based on a recent graph-theoretic framework
 - Graphs with specific degree distributions p_{jk}, clustering coefficients cc and bidirectionality coefficient bc
- Based on generating functionality $\mathcal{G}(x,y) = \sum_{j,k} p_{jk} x^j y^k$
- Connectivity indicator: $ci = \sum_{j,k} (jk-j(bc+cc)-k) p_{jk}$
 - Necessary condition for semantic interoperability in the large: ci ≥ 0
- Also: approximations of the size of semantically interoperable clusters

Example: Directed Graph

Connectivity Indicator (a) and maximal connected cluster size (b) Random network of 10000 vertices and a varying number of edges.

Analysis of a bioinformatic system

- Analysis of the Sequence Retrieval System (SRS)
 - Commercial information indexing and retrieval system for bioinformatic libraries
 - Schemas described in a custom language (Icarus)
 - Mappings (foreign keys) from one database to others
- Crawling the EBI repository
 - 388 databanks
 - 518 (undirected) links
 - Power-law distribution of node degrees $y(x) = \alpha x^{-\gamma}$ with $\alpha = 0.21$ and $\gamma = 1.51$
 - Clustering coefficient = 0.32
 - Diameter = 9
- Connectivity indicator ci = 25.4
 - Super-critical state
- Size of the giant component
 - 0.47 (derived) VS 0.48 (observed)

Query Dissemination in Weighted Networks

- Per-hop forwarding behaviors
- Only forward if $w_i \ge \tau$

 \bullet $\tau = 0$: flooding

 \bullet τ = 1 : exact answers

- Degree distribution taken from the SRS system
- Uniformly distributed weights between 0 and1

Local View on Global Properties

Flooding with
 Varying TTLs
 Varying Number of
 Random Walkers, TTL 20
 20 Random Walkers
 with Varying TTLs

(Random graph, 1000 vertices, 4000 edges)

Local View on Global Semantic Properties

Systems

GridVine: a P2P Semantic Overlay Network

GridVine: Data Independence

- Building large-scale semantic systems
 - Self-organizing semantic overlay network
- Principle of data independence
 - Scalable physical layer
 - Semantic logical layer

Indexing semi-structure data in GridVine

Triple t = <lsir:GridVine> <dc:creator> <lsir:pcm>

- Insertion of schemas and mappings
- Decentralized conjunctive query resolution based on iterative look-ups

Query Resolution

- Triple pattern queries {(?s, ?p, ?o)}
 - path queries, conjunctive queries
 - Iterative, distributed table lookup

1) Get(<u>foaf:Person</u>,q)

2) Results = $\pi_s O_{p=rdf.type, o=foaf:Person}$ (R)

4) Results = Results $\cap \pi_s \sigma_{p=foaf:name, o="John"}(R)$

3) Get(John,q,r)

Semantic Integration in GridVine

- Vertical integration: hierarchy of classes
 - Fostering semantic interoperability through reuse of conceptualizations
 - Popular base classes bootstrapping interoperability through monotonic inheritance of properties
 - RDFS entailment can be materialized

Semantic integration in GridVine

- Horizontal integration: mappings
 - Message passing + feedback analyses to get probabilistic guarantees on mapping soundness
 - Generation of new mappings if necessary (graph analysis)

Semantic Gossiping in GridVine

- Decoupling of the indexing and mediation layers
 - No more constraints on gossiping
- Different query forwarding paradigms
 - Iterative forwarding
 - Recursive forwarding

idMesh: Disambiguation of Linked Data

- Increasingly, the world is modeled as a collection of (interlinked) identifiers
 - Linked Data
 - Semantic Web
 - RESTful services

http://data.semanticweb.org/person/philippe-cudre-mauroux

foaf:made

http://data.semanticweb.org/conference/www/2009/paper/60

Naming & Decentralization

- The great thing about *unique identifiers* is that there are *so many* to choose from
 - Decentralized naming game
 - Soaring dimensions in Web 2.0 / 3.0 contexts
 - Social websites

%23Philippe%2BCudre-Mauroux

- Exported (linked) data
- Automated mash-ups

http://semanticweb.org/id/Philippe_Cudre-Mauroux http://data.semanticweb.org/person/philippe-cudre-mauroux http://people.csail.mit.edu/pcm/i http://lsi ple.epfl.ch/pcudre/i lungle http://semanticweb.org/wiki/Special ppe Cudr%C3%A9-Mauroux r%C3%A9-Mauroux http://tw.rpi.edu/wiki/Special http://wiki.ontoworld.of 'Philippe Cudr%C3%A9-Mauroux http://korrekt.org/index portRDF/Philippe Cudr%C3%A9-Mauroux http://prauw.cs.vu.nl:808 graph?profile=http%3A%2F%2Fwww.cs.vu.nl%2F%7Epmika%2Fsocionet

http://www.zoominfo.com/PersonID=402960578 http://www.flickr.com/photos/28735...@N00/http://www.facebook.com/profile.php?id=1251943...

Entity Consolidation (i)

- A few constructs are increasingly used to consolidate Wed identifiers
 - OWL:SameAs, XFN rel:me, pipes, etc.

Entity Consolidation (ii)

- Online entity consolidation is a complex game
 - Simple binary constructs are often insufficient
 - Social contexts (e.g., professional vs personal entities)

http://people.csail.mit.edu/pcm/i ??? http://www.facebook.com/id=1251943...

Granularity (e.g., out-of-date entities)

■ Uncertainty (e.g., automatically-generated entities)

http://people.csail.mit.edu/pcm/i ??? http://www.zoominfo.com/PersonID=402960578

New Twist on an Old Problem

- Well-known problem know as Entity Disambiguation or Resolution
 - Large body of related work
- New context
 - Unprecedented scale
 - Networked game
 - Social dimension
- central problem impeding all automated, large-scale online data processing endeavors
- new approach based on graph analysis only

idMesh Constructs

```
<rdfs:Class rdf:ID="Entity"/>
<rdf:Property rdf:ID="idMeshProperty">
     <rdfs:domain rdf:resource="#Entity" />
     <rdfs:range rdf:resource="#Entity" />
</rdf:Property>
<rdf:Property rdf:ID="LinkConfidence">
     <rdfs:domain rdf:Statement />
     <rdfs:range rdf:datatype="&xsd;decimal" />
</rdf:Property>
<rdf:Property rdf:ID="EquivalentTo">
     <rdfs:subPropertyOf rdf:resource="#idMeshProperty" />
</rdf:Property>
<rdf:Property rdf:ID="NotEquivalentTo">
     <rdfs:subPropertyOf rdf:resource="#idMeshProperty" />
</rdf:Property>
<rdf:Property rdf:ID="Predates">
     <rdfs:subPropertyOf rdf:resource="#EquivalentTo" />
</rdf:Property>
<rdf:Property rdf:ID="Postdates">
     <rdfs:subPropertyOf rdf:resource="#EquivalentTo" />
</rdf:Property>
<rdf:Property rdf:ID="Equidates">
     <rdfs:subPropertyOf rdf:resource="#EquivalentTo" />
</rdf:Property>
```

- Two levels of granularity
 - Entity disambiguation
 - Temporal discrimination
- Confidence values
- Can encompass previous constructs

Problem Definition

- Input: series of statements defining a weighted graph of interrelated identifiers
 - no associated contents, attributes, or properties...

- Output: clusters of equivalent identifiers
 - probabilistic, *a posteriori* network equivalence
 - equivalence based on probabilistic threshold

Probabilistic Disambiguation

Trusted Source S₁

$$< e_1 \equiv c_1 e_2 >$$

 $< e_1 \equiv c_2 e_3 >$
 $< e_1 \not\equiv c_3 e_4 >$
 $< e_2 \not\equiv c_4 e_4 >$

Unknown Source S₂

$$\begin{vmatrix} \\ \end{vmatrix}$$

Definition of two graphs

Probabilistic Disambiguation (ii)

Definition of conditional probability functions relating links & sources

- Transitive closures of link properties (*entity graph*)
 - *ID Equivalence* is
 - symmetric
 - transitive

Probabilistic Disambiguation (iii)

Definition of conditional probability functions relating links & sources

- Source discrimination (*source graph*)
 - Through internet domains / authentication mechanisms
 openid, foaf-ssl, etc.
 - High confidence values for well-known + well-behaved sources

Probabilistic Disambiguation

Probabilistic inference on *combined* graph

Scalability

- Problem: both source / entity graphs can become very large in practice
 - Unbounded number of sources
 - peer production
 - Cheap production of (uncertain) links
 - automated matching algorithms
- inference in itself should be decentralized

Distributing the Probabilistic Graph

Distributed, P2P Architecture

Message Passing

DHT

Internet

idMesh: summary of Results

- *Efficient*, *distributed* computations
 - Parallelized sums & products only
 - Quasi-instantaneous on a local machine
 - Naturally scales out in networked environments
 - A couple of seconds to disambiguate 8'000 entities interlinked by 24'000 links on 400 machines
- High discriminative power in practice
 - 90%+ accuracy with well-behaved but uncertain sources
 - 75% accuracy with 90% malign sources

Conclusions

- More and more machine-processable (semi-structured) data available
 - Sensing Technologies
 - Peer Production
 - Human Computation
- Top-down efforts to align data have failed largely
- Emergent Semantics
 - Bottom-up
 - Dynamic, self-organizing
 - Best-Effort
- Only resort to foster interoperability in the large scale decentralized data spaces currently emerging

COMPUTER AND COMMUNICATION SCIENCES

EMERGENT SEMANTICS

INTEROPERABILITY IN LARGE-SCALE DECENTRALIZED INFORMATION SYSTEMS

Philippe Cudré-Mauroux

EPFL Press
Distributed by CRC Press

Emergent Semantics: Rethinking Interoperability for Large Scale Decentralized Information Systems

references:

http://people.csail.mit.edu/pcm/