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A
bstract

In
thispaperw

e
establish

a
form

allink
betw

een
netw

ork
com

plexity
in
term

sofBirkhoff-von
N
eu-

m
ann

decom
positions

and
heatflow

com
plexity

(in
term

s
ofquantifying

the
heatflow

ing
through

the
netw

ork
ata

given
inverse

tem
perature).

W
e
propose

and
proofcharacterization

theorem
s.
Fur-

therm
ore,w

e
also

define
heatflow

com
plexity

in
term

softherm
odynam

icdepth,w
hich

resultsin
a

novelapproach
forcharacterizing

netw
orksand

quantify
theircom

plexity.
In
our

experim
ents

w
e
characterize

severalprotein-protein
interaction

(PPI)netw
orks

and
then

highlighttheirevolutive
differences.

PolytopalvsH
eatFlow

Com
plexity

W
hatisthe

com
plexity

ofa
netw

ork/graph?
H
ow

to
quantify

it?

(PolytopalC
om
plexity

[?]).
G
iven

G
=

(V
,E

),an
undirected

and
unw

eighted
graph

w
ith
diffusion

kernel
K
β(G

),and
BvN

decom
position

K
β(G

)
=

∑

γα
=
1
p
α
P
α ,w

e
define

the
polytopalcom

plexity
ofG

asthe
β-dependentfunctionB

β(G
)
=

H
(P

)

log
2
n
=

log
2
γ
+
D
(P

||U
γ )

log
2
n

,
(1)

w
here

P
=
{
p
1 ,...,p

γ }
isthe

probability
density

function
(pdf)induced

by
the

decom
position,

H
(.)

the
entropy

and
D
(.)the

K
ullback-Leiblerdivergence

D
(P

||Q
)
=
∑

α
p
α
log

p
α
q
α .

(H
eatFlow

C
om
plexity

[?]).
G
iven

G
=

(V
,E

)
w
ith

|V
|
=

n
and

adjacency
m
atrix

A
.
The

dif-
fusion

kernelis
K
β(G

)
=

exp(−
β
L
)
≡

Φ
Λ
Φ
T,being

Λ
=

d
ia
g(e

−
β
λ
1,e

−
β
λ
2,...,e

−
β
λ
n),and

λ
1
=

0
≤
λ
2
≤

...
≤
λ
n
are

the
eigenvaluesof

L
.Therefore,the

heatflow
com

plexity
isdefined

as
totalheatflow

ing
through

the
graph

ata
given

β:

F
β(G

)
=

n
∑i=

1

n
∑j$=

i

δ
ij



n
∑k
=
1

φ
k (i)φ

k (j)e
−
λ
k β



=
n
∑i=

1

n
∑j$=

i

δ
ij K

βij
,

(2)

Characterization
ofPolytopaland

Flow
Com

plexity

(Phase-Transition
Point)

Let
G

=
(V
,E

)
be
a
graph

w
ith

|V
|
=

n
and

edge-set
E
.
Then,there

exists
a
unique

finite
inverse

tem
perature

β
+

≥
0
so
that

β
+
is
the

m
axim

al
value

for
w
hich

the
sum

of
the

off-diagonalelem
ents

of
the

diffusion
kernel(or

G
ram

m
atrix)

on
graph

G
is
less

thatthe
sum

of
the

on-diagonalelem
ents.

In
other

w
ords,there

exists
an
unique

β
+

≥
0
so
that

∑

ni=
1
∑

nj$=
i K

β
+

ij
<

tra
ce(K

β
+),and

∑

ni=
1
∑

nj$=
i K

βij
≥

tra
ce(K

β)
∀
β
>
β
+.

(Phase-Transition)Let
β
+

>
0
define

a
PTP.Then,the

heatflow
ca
lF
β
+(G

)
corresponding

to
the

PTP
is
m
axim

alam
ong

allchoices
of
β.M

oreover,this
im
plies

thatthe
entropy

H
β
+(P

)w
ith

P
=

{
p
1 ,...,p

γ }
corresponding

to
the

m
axim

alentropy
BvN

decom
position

of
K
β
+(G

)
=

∑

γα
=
1
p
α
P
α

ism
axim

alover
β.

H
eatFlow

-Therm
odynam

ic
D
epth

Com
plexity

(N
ode

H
istory

&
Expansion

Subgraphs)
Let

G
=

(V
,E

)
w
ith

|V
|
=

n.
Then

the
history

of
a

node
i
∈

V
is
h
i (G

)
=

{
e(i),e

2(i)),...,e
p(i)}

w
here:

e(i)
⊆

G
is
the

first-order
expansion

sub-
graph

given
by

iand
all

j
∼

i,
e
2(i)

=
e(e(i))

⊆
G
is
the

second-order
expansion

consisting
on

z
∼

j
:
j
∈

V
e(i) ,z

$∈
V
e(i) ,and

so
on
until

p
cannotbe

increased.
If
G
is
connected

e
p(i)

=
G
,

otherw
ise

e
p(i)isthe

connected
com

ponentto
w
hich

ibelongs.

(C
ausalTrajectory)G

iven
h
i (G

),the
heatflow

com
plexity

'ft
=

f
(e
t(i))

forthe
t
−

th
expansion

of
i,a

generator
F
and

a
Bregm

an
divergence

D
F ,the

causaltrajectory
leading

to
G
(orone

ofits
connected

com
ponents)from

iischaracterized
by
the

center
'c
i
∈
R
dand

radius
r
i
∈
R
ofthe

M
EBB

B
'c
i ,r

i=
{
'ft
∈
X

:
D
F
('c
i || 'ft )

≤
r
i }.

(TD
N
etw

ork
D
epth)

G
iven

G
=

(V
,E

),w
ith

|V
|
=

n
and

allthe
n
pairs

('c
i ,r

i ),the
heatflow

-
therm

odynam
ic
depth

com
plexity

of
G
ischaracterized

by
the

M
EBB

B
'c,r

=
{'c

t
∈
X
i
:
D
F
('c||'c

i )
≤

r}
and

D
m
in

=
m
in
f
∈
B
'c,r D

F
(f

∞
||f

),w
here

f
∞

=
f
(B

∗ )
∈
R
d
isthe

van
derW

aerden
com

plexity
trace

.A
sa
result,the

TD
depth

ofnetw
ork

isgiven
by

D
(G

)
=
r
×
D
m
in .

Experim
entalResults

The
m
ain

experim
entconsistsofanalyzing

222
PPIs,also

related
to
histidine

kinase,from
6
different

groups
(allthe

PPIs
in
the

sam
e
group

corresponds
to
the

sam
e
species)w

ith
the

follow
ing

evolu-
tive

order(from
olderto

m
ore

recent):Aquifex
–4
PPIs,Therm

otoga–4
PPIs,G

ram
-Positive–52

PPIs,
C
yanobacteria–73

PPIs
Proteobacteria–45

PPIs.
There

is
an
additionalclass

(Acidobacteria—
46

PPIs).
H
istogram

m
ing

TD
s
reveals

typically
long

tailed
distributions

w
ith
m
ostofthe

TD
s
concen-

trated
ata

given
point.A

re
these

pointsordered
according

to
the

evolutive
order?

Thisquestion
can

be
answ

ered
by
studying

the
cum

ulative
distributions

instead
ofthe

pdfs.In
such

case,reaching
the

top
(cum

ulative=
1)soon

indicateslow
TD

w
hereasreaching

itlaterindicateshigh
TD
.Then,itcan

be
seen

thatthe
evolving

com
plexity

ofthe
signaltransduction

m
echanism

driven
by
the

histidine
kinase

is
properly

quantified
by
TD

forthe
5
firstphyla

studied.
H
ow
ever,the

A
cidobacterium

sp.
chosen

seem
solderthan

G
ram

-Postive
w
hich

seem
snotto

be
the

case.W
e
also

show
som

e
'c
i sofallclasses,

and
theirintraclassvariability

islow
(sim

ilarshape).Thus,w
e
can

conclude
thatTD

isa
good

princi-
pled

toolforanalying
the

com
plexity

ofnetw
orks.W

e
also

analyze
the

cum
ulativesofthree

different
species

of
the

sam
e
phylum

(76
PPIs

of
Spirochaetes)

to
check

thatthe
intra-species

variability
is

low.Finally,w
eshow

how
thePPIsanalyzed

in
thesecond

experim
entfollow

thefluctuation
law,and

som
e
ofthem

like
C
ianobacteria

follow
the

LFLED
.

Conclusions

In
this

w
ork,there

are
fourcontributions:

a)the
characterization

heatflow
com

plexity
in
term

s
of

inform
ation

theory,b)to
define

structuralcom
plexity

in
term

sofH
eatFlow

-Therm
odynam

ic
D
epth,

c)to
explore

connections
betw

een
the

heat-flow
therm

odynam
ic
depth

and
the

fluctuation
theorem

and
d)testthe

form
aldefinition

in
term

sofcharacterizing
the

evolution
ofBacteria.
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