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NETWORK?

Abstract

In this paper we establish a formal link between network complexity in terms of Birkhoff-von Neu-
mann decompositions and heat flow complexity (in terms of quantifying the heat flowing through
the network at a given inverse temperature). We propose and proof characterization theorems. Fur-
thermore, we also define heat flow complexity in terms of thermodynamic depth, which results in a
novel approach for characterizing networks and quantify their complexity.

In our experiments we characterize several protein-protein interaction (PPI) networks and then
highlight their evolutive differences.

Polytopal vs Heat Flow Complexity

What is the complexity of a network/graph? How to quantify it?
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(Polytopal Complexity [?]). Given G' =
kernel K :QY and BvN decompositi
of G as the 3-dependent function

E), an undirected and unweighted graph with diffusion

w_l PaPa, we define the polytopal complexity

B%(G) = . 0)

where P = {pi,...,py} is the probability density function (pdf) induced by the decomposition, H.)
the entropy and D(.) the Kullback-Leibler divergence D(P||Q) = 3", pa log?

(Heat Flow ﬁeiﬁ@:? [?D). Given G = (V,E) with |V| = n and adjacency matrix A. The dif-
fusion kernel is K7(G) = exp(— = OADGT, being A = diag(e= M, e e=M) and
A1 =0 < X\ < ... <\, are the eigenvalues of L. Therefore, the heat flow complexity is defined as
total heat flowing through the graph at a given j3:
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Characterization of Polytopal and Flow Complexity

(Phase-Transition Point) Let G = (V,E) be a graph with |V| = n and edge-set . Then, there
exists a unique finite inverse temperature 5 > 0 so that B* is the maximal value for which
the sum of the off-diagonal elements of the diffusion kernel (or Gram matrix) on graph G is less
that the sum of the on-diagonal elements. In other words, there exists an unique 3% > 0 so that

b Z: K} W+ < trace(K"),and 1 MM} Nﬁw > trace(KP) V3 > .

(Phase-Transition) Let % > 0 define a PTP. Then, the heat flow cal " (G) corresponding to the
PTP is maximal among all choices of 3. Moreover, this implies that the entropy H7"(P) with P =

.., p~} corresponding to the maximal entropy BvN decomposition of KP (G) = X1 paPa
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Heat Flow - Thermodynamic Depth Complexity

(Node History & Expansion Subgraphs) Let G = (V,E) with |[V| = n. Then the history of a
node i € V is hi(G) = {e(i),e(i)),...,eP(i)} where: e(i) C G is the first-order expansion sub-
graph given by i and all j ~ i, i) = e(e(i)) C G is the second-order expansion consisting on
2~ j:j € V)2 & Ve, and so on until p cannot be increased. If G is connected (i) = G,
otherwise eP(i) is the connected component to which 7 belongs.

(Causal Trajectory) Given h;(G), the heat flow complexity \ﬂ = f(e'(i)) for the t — th expansion
of 4, a generator F' and a Bregman divergence D, the causal trajectory leading to G (or one of its
connected components) from i is characterized by the center ¢; € R and radius r; € R of the MEBB
Bt = {fy e X : Dp(E|lfy) < rib-

(TD Network Depth) Given G = (V, E), with |V| = n and all the n _pairs i), the heat \5%
thermodynamic depth complexity of G is characterized by the MEBB B™" = 3 m X, : Dp(d|c) <

r}and Dy = minpeger Dp(f>]f), where f> = f(By) € R is the van der Waerden no_.:v_nx_@
trace . As a result, the 7D depth of network is given by D(G) = r x D,

Experimental Results

The main experiment consists of analyzing 222 PPIs, also related to histidine kinase, from 6 different
groups (all the PPIs in the same group corresponds to the same species) with the following evolu-
tive order (from older to more recent): Aquifex —4 PPIs, Thermotoga—4 PPIs, Gram-Positive—52 PPIs,
Cyanobacteria—T73 PPIs Proteobacteria—45 PPIs. There is an additional class (Acidobacteria—46
PPIs). Histogramming TDs reveals typically long tailed distributions with most of the TDs concen-
trated at a given point. Are these points ordered according to the evolutive order? This questi
be answered by studying the cumulative distributions instead of the pdfs. In such case, reaching the
top (cumulative=1) soon indicates low TD whereas reaching it later indicates high TD. Then, it can be
seen that the evolving complexity of the signal transduction mechanism driven by the histidine kinase
is properly quantified by TD for the 5 first phyla studied. However, the Acidobacterium sp. chosen
seems older than Gram-Postive which seems not to be the case. We also show some ¢;s of all classes,
and their intraclass variability is low (similar shape). Thus, we can conclude that TD is a good princi-
pled tool for analying the complexity of networks. We also analyze the cumulatives of three different
species of the same phylum (76 PPIs of Spirochaetes) to check that the intra-species variability is
low. Finally, we show how the PPIs analyzed in the second experiment follow the fluctuation law, and
some of them like Cianobacteria follow the LFLED.
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Conclusions

In this work, there are four contributions: a) the characterization heat flow complexity in terms of
information theory, b) to define structural complexity in terms of Heat Flow-Thermodynamic Depth,
¢) to explore connections between the heat-flow thermodynamic depth and the fluctuation theorem
and d) test the formal definition in terms of characterizing the evolution of Bacteria.
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