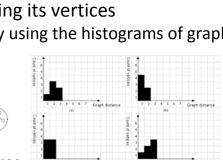
Indexing Tree and Subtree by using a Structure Network

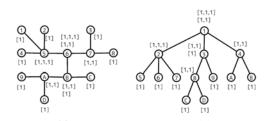

Mingming ZHANG, Shinichiro OMACHI Graduate School of Engineering, Tohoku University

PURPOSE

Describing the trees' super-sub relationships with a network, and using a numeric method to access it fast.

Structure Network

- □ Structure Network: A network describing the super-sub relationship of trees with the tree structures as the nodes.
- ☐ Find out super & sub trees for a given tree
 - Super-tree: Adding an edge
 - ◆ Sub-tree: Removing a leaf edge
- ☐ The structures of super & sub trees of a tree are corresponding to the results of clustering its vertices
 - Clustering vertices by using the histograms of graph distances



By using this network the trees' super-sub relationships can be represented.

sub-structures super-structures

Encoding a Structure

- ☐ Each vertex can be labeled with its graph distance histogram
- ☐ The labeled results are corresponding to the labeled result in a traditional matching method [1]

vertices in Tree (a)	vertices in Tree (b)	Label	Histogram
1,2,4	5,6,7	[1]	[1,3,2,4,2]
9,D	C,D	[1]	[1,2,2,2,5]
3,8	A,B	[1]	[1,2,2,5,2]
C	9	[1]	[1,2,4,5]
5	2	[1,1,1]	[4,2,4,2]
A	8	[1,1]	[3,2,2,5]
7	4	[1,1]	[3,2,5,2]
В	3	[[1,1],[1]]	[3,4,5]
6	1	[[1,1,1],[1,1]]	[3,7,2]

The clustering result includes all the structure information of a tree

- ☐ Encoding the clustering result to represent the structure feature of a tree
 - Encoding each cluster as following field

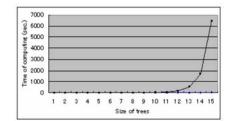
h := histogram sequence; l := length of h; s := size of cluster;field := (l+2), s, h;

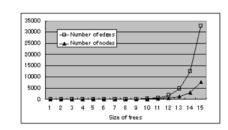
Link all cluster fields to make a long numeric array that can represent the structure of a tree

(5,1,3,4,5,5,1,3,7,2,6,1,1,2,4,5,6,1,3, 2,2,5,6,1,3,2,5,2,6,1,4,2,4,2,7,2,1,2, 2,2,5,7,2,1,2,2,5,2,7,3,1,3,2,4,2)

Experiments & Results

- ☐ Comparing the isomorphic ability with the traditional matching method^[1]
 - ◆ 20,000 trees
 - Up to 20 vertices
 - Clustering them by their structures


Correct Rate: 100%


Time complexity

9.5 days 📥 45 mins

Evaluation for constructing the Structure Network

- ◆ Either time and spatial complexities of constructing network are exponential increases
- ◆The structure network need to be constructed **only once**

