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Summary

� The starting point: generative kernels

– the generative embedding point of view

� The normalization problem

� Nonlinear normalization
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� Nonlinear normalization

� Results and findings

� Conclusions and open issues



� Two approaches to classification

Background

S1

S2

� Generative models:

– better description capabilities
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S2

S3 

– ability to deal also with non 

vectorial (structural) 

representations (e.g. sequences)

� Discriminative methods:

– typically have better classification

performances
SVM

HMM



� Generative kernels are hybrid methods able to

merge

– description capabilities of generative 

models

Generative kernels

4

models

– classification skills of discriminative 

methods



� IDEA: Exploit a generative model to compute

a kernel between objects (to be used in a 

discriminative scenario)

Generative kernels

Two objects Generative 
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S1 S2

S3 S4

O1

O2

K
λ
(O1,O2)

Two objects Generative 

model λ Kernel



� Main feature:

– very suitable for structured (non vectorial) 

objects (sequences, graphs, sets, strings,...)

Generative kernels

attcgatcgatcgatcgatcaggcg
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Examples: Fisher Kernel, Marginalized Kernel, 

KL kernel, Product Probability kernel

attcgatcgatcgatcgatcaggcg

cgctagagcggcgaggacctatccg



Mapping

An alternative point of view

Objects (e.g. 

sequences)

Feature space

(generative 

embedding or Score 

space)Generative model
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S1 S2

S3 S4

Similarity

Generative 

Kernel

Generative 

embedding



� Many generative kernels may be seen in this

view

Example: the Fisher Kernel

An alternative point of view
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Example: the Fisher Kernel

� The generative embedding space (called

Fisher Score space)

� The similarity

)|(log)( θφ θ OPO ∇=

)()(),( 2121 OOOOK φφ ⋅=



� Different kernels may be defined

depending on:

– different generative models

– different mappings

Generative kernels
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– different mappings

– different similarities in the feature space

� HERE: 

– HMM-based generative kernels

– the kernel is the inner product in the 

obtained generative embedding space



� Observation: it has been shown in different

cases that a proper normalization of the 

obtained generative embedding space is

crucial

The normalization problem
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– Fisher Score space – Smith Gales NIPS02 

– Marginalized Kernel – Tsuda et al Bioinformatics
2002

– Other evidences: Generative embedding spaces
proposed in Bicego, Pekalska, Tax, Duin, PR 09



� In all these cases the applied normalization is

linear

– e.g. standardization

The normalization problem (2)
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– every direction j of the space has zero 

mean and unit variance

� QUESTION: may a nonlinear normalization be

useful?
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� Here we try to answer to the previous

question. 

� Nonlinear normalization: apply to every

component of the feature vector in the 

The proposed approach
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component of the feature vector in the 

generative embedding space a nonlinear

mapping (like powering, logarithm, logistic)

� We applied different nonlinear mappings to

different HMM-based generative kernels in 

three applications



� O is a generic object (e.g. a sequence), λ is

the generative model (or a set of)

� Generative embedding:

Details

T

Nggg )],(),...,,(),,([ 21 λλλ OOOO →
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we assume gi(O,λ) >0

� Nonlinear normalization: we applied a non 

linear function f to every direction of the space

Nggg )],(),...,,(),,([ 21 λλλ OOOO →

T

Ngfgfgf ))],(()),...,,(()),,(([ 21 λλλ OOOO →



� Powering function

� Natural logarithm (no parameters)

Details: the nonlinear mappings

0       ),()),(( >= ρλλ ρ
OO ii ggf
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� Natural logarithm (no parameters)

� Logistic function

)),(1log()),(( λλ OO ii ggf +=

( ) 10       ),(tanh)),(( <<= ρλρλ OO ii ggf



� We tested the different nonlinear mappings

with different embeddings and different

applications

The experimental evaluation

DETAILS
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S1

S2

S3 

DETAILS

Generative model: Hidden Markov

Model

• fully ergodic, trained with

Baum Welch 

• number of states is application

dependent



� Studied generative embeddings:

– Fisher Score [Jaakkola et al., 1999]: 

gi(O,λ) is the derivative of the log likelihood

of the HMM w.r.t. to a given parameter, 

The experimental evaluation
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of the HMM w.r.t. to a given parameter, 

evaluated in O

– State Space [Bicego et al., 2009]: 

gi(O,λ) is the averaged frequency of passing

through a certain state of the HMM while

observing O



– Marginalized Kernel Space [Tsuda et al., 

2002]: very similar to the State Space

– Transition Space [Bicego et al., 2009]: 

The experimental evaluation
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– Transition Space [Bicego et al., 2009]: 

gi(O,λ) is the averaged frequency of passing

through a given transition of the HMM while

observing O

(All details in the S+SSPR10 paper)



� Applications:

– 2D shape recognition using the Chicken

Pieces Database

The experimental evaluation

Shapes are described
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– gesture recognition using the AUSLAN 

dataset (sign language)

Shapes are described

with chain codes

(discrete HMM) 

and curvature 

(continuous Gaussian

HMM)



� Classification is performed with SVM 

– the kernel: the inner product in the new

space

– C optimized with cross validation

Experimental evaluation
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– C optimized with cross validation

� Accuracies computed with K-fold cross 

validation (results averaged over 20 

repetitions)

� Different values for the parameters of

nonlinear mappings (only best results are 

reported)



Observations from the results

1. it works for generative embeddings in which

each direction summarizes information 

related to a single HMM state

– YES: State Space, Marginalized kernel

Findings: when it works (1)
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– YES: State Space, Marginalized kernel

space

– NO: Fisher Score Space, Transitions space

S1 S2

),|( 2 λSP O

),|( 1 λSP O



2. It works when the nonlinear mapping has

two characteristics:

Findings: when it works (2)
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6• concave, with vanishing

derivative at +∞
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NOTE: powering with ρ>1 does not work
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derivative at +∞

• asymptotically

nonexpansive: it reduces

distances, provided that

gi(O,λ) are large enough



Normalization 2D shape
recognition
(chain codes)

2D shape
recognition
(curvature)

Gesture
classification

How it works

Classification accuracies for State 

Space embedding
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(chain codes) (curvature)

Linear 0.751 0.736 0.798

powering (ρ<1) 0.813 0.807 0.904

logarithm 0.753 0.755 0.838

logistic 0.770 0.780 0.826

The standard errors of the mean are all less than 0.007



Normalization 2D shape
recognition
(chain codes)

2D shape
recognition
(curvature)

Gesture
classification

How it works (2)

Classification accuracies for Marginalized

kernel embedding
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(chain codes) (curvature)

Linear 0.775 0.767 0.533

powering (ρ<1) 0.855 0.780 0.932

logarithm 0.829 0.776 0.901

logistic 0.817 0.776 0.856

The standard errors of the mean are all less than 0.007

In some cases the improvements are impressive



� The best is the powering operation (with 0<ρ<1) 

Best nonlinear mapping

it reduces the contribution

of larger components
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and

it raises the contribution

of smaller components

The effect is to re-equilibrate the contributions

of each state of the HMM



� Non linear normalization of generative 

embedding spaces may be very useful, but

– not in all cases

– not for all nonlinear mappings

Conclusions & future work
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– not for all nonlinear mappings

� Why it works is still an issue

– A direction we are investigating

• effect of de-diagonalizing the kernel matrix (as in 

Schölkopf et al., ECML 2002)

� Choice of parameters is of course crucial



THANK YOU!
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QUESTIONS?


