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Summary

m [he starting point: generative kernels
— the generative embedding point of view

= The normalization problem

= Nonlinear normalization

m Results and findings

m Conclusions and open issues
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Background

m Two approaches to classification

s Generative models:
— better description capabilities

— ability to deal also with non Q

vectorial (structural)
representations (e.g. sequences)

m Discriminative methods: )

— typically have better classification - -

performances




Generative kernels

m Generative kernels are hybrid methods able to
merge

— description capabilities of generative
models

— classification skills of discriminative
methods



Generative kernels

= IDEA: Exploit a generative model to compute
a kernel between objects (to be used in a
discriminative scenario)

Two objects
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Generative
model A

Kernel
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Generative kernels

m» Main feature:

— very suitable for structured (non vectorial)
objects (sequences, graphs, sets, strings,...)

attcgatcgatcgatcgatcaggecg 214?
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Examples: Fisher Kernel, Marginalized Kernel,
! KL kernel, Product Probabillity kernel
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An alternative point of view

Obijects (e.g.
sequences)

Mapping

Generative model

Generative
embedding

Feature space |
(generative I
embedding or Scork
space) I

v Similarity

Generative
Kernel



An alternative point of view

s Many generative kernels may be seen in this
view

Example: the Fisher Kernel

m [he generative embedding space (called
Fisher Score space)

¢(0)=V ,log P(O16)

= The similarity K(O,,0,)=¢(0,)-¢(0,)



Generative kernels

m Different kernels may be defined
depending on:

— different generative models
— different mappings
— different similarities in the feature space

s HERE:
— HMM-based generative kernels

— the kernel is the inner product in the
q obtained generative embedding space



The normalization problem

m Observation: it has been shown in different
cases that a proper normalization of the
obtained generative embedding space is
crucial

— Fisher Score space — Smith Gales NIPS02

— Marginalized Kernel — Tsuda et al Bioinformatics
2002

— Other evidences: Generative embedding spaces
proposed in Bicego, Pekalska, Tax, Duin, PR 09



The normalization problem (2)

m In all these cases the applied normalization is
linear

— e.g. standardization
j j
-new X' —
x'i = .'u
[} 6]
— every direction j of the space has zero
mean and unit variance

s QUESTION: may a nonlinear normalization be
useful?
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The proposed approach

= Here we try to answer to the previous
question.

= Nonlinear normalization: apply to every
component of the feature vector in the
generative embedding space a nonlinear
mapping (like powering, logarithm, logistic)

s We applied different nonlinear mappings to
different HMM-based generative kernels in
three applications



Detalls

m Ois a generic object (e.g. a sequence), Ais
the generative model (or a set of)

s Generative embedding:
0—[g,(0,1),g,(0,),...,8,(0,D]
- we assume g,(0,A) >0

= Nonlinear normalization: we applied a non
linear function fto every direction of the space

| O l/(0.1).f(20.D).... (85 (0, D)



Detalls: the nonlinear mappings

s Powering function
f(g,(0,4)=¢,(0,1)" p>0
m Natural logarithm (no parameters)
I f(£:(0,4)) =log(1+¢,(0,4))
m Logistic function

f(g.(0,4)) =tanh(p g,(0,4)) 0<p<lI

q



The experimental evaluation

m We tested the different nonlinear mappings
with different embeddings and different
applications

DETAILS
Generative model: Hidden Markov

Model °Q
« fully ergodic, trained with ‘Q

Baum Welch Q
« number of states is application e

dependent



The experimental evaluation

m Studied generative embeddings:
— Fisher Score [Jaakkola et al., 1999]:

g:(0,A) is the derivative of the log likelihood
of the HMM w.r.t. to a given parameter,
evaluated in O

L
— State Space [Bicego et al., 2009]:

9.(0,A) is the averaged frequency of passing
through a certain state of the HMM while

q observing O



The experimental evaluation

— Marginalized Kernel Space [Tsuda et al.,
2002]: very similar to the State Space

— Transition Space [Bicego et al., 2009]:

9.(0,A) is the averaged frequency of passing
through a given transition of the HMM while
observing O

(All details in the S+SSPR10 paper)



The experimental evaluation

m Applications:

— 2D shape recognition using the Chicken
Pieces Database

Shapes are described  Wine »voddvabtay
with chain codes Back P eo<o

- (discrete HMM) _— ‘ ' ‘ ‘ ' ‘ ‘ b | '

and curvature
(continuous Gaussian  Thigh and back ) HQ R WA Y, ﬂ o

HMM) et emwilPNerg®

— gesture recognition using the AUSLAN
q dataset (sign language)



Experimental evaluation

m Classification is performed with SVM

— the kernel: the inner product in the new
space

— C optimized with cross validation

m Accuracies computed with K-fold cross
i validation (results averaged over 20
repetitions)
m Different values for the parameters of

nonlinear mappings (only best results are
reported)



Findings: when it works (1)

Observations from the results

1. it works for generative embeddings in which
each direction summarizes information
related to a single HMM state

— YES: State Space, Marginalized kernel
space

— NO: Fisher Score Space, Transitions space

P(S,10,1)
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Findings: when it works (2)

2. It works when the nonlinear mapping has
two characteristics:

e concave, with vanishing

derivative at +«

« asymptotically 2
nonexpansive: it reduces

distances, provided that
9.(0,A) are large enough

NOTE: powering with p>1 does not work



How It works

Classification accuracies for State

Space embedding

Normalization 2D shape 2D shape Gesture
recognition recognition classification
(chain codes) (curvature)

Linear 0.751 0.736 0.798

powering (p<1) 0.813 0.807 0.904

logarithm 0.753 0.755 0.838

logistic 0.770 0.780 0.826

The standard errors of the mean are all less than 0.007

_



How It works (2)

Classification accuracies for Marginalized
kernel embedding

Normalization 2D shape 2D shape Gesture
recognition recognition classification
(chain codes) (curvature)

Linear 0.775 0.767 , 0533 ':

logarithm 0.829 0.776

logistic 0.817 0.776

powering (p<1) 0.855 0.780 | 0.932
0.901
0.856

The standard errors of the mean are all less than 0.007

[

R



Best nonlinear mapping

m The best is the powering operation (with O<p<1)

2
it reduces the contribution *" -,
of larger components P e
e

1.2F

and 1 r ,__-—j_‘,.’,f-"":’,'ff" ,,;::-:;:;;;_"._'”_”_L”_:”_”_'_'.'_‘__
it raises the contribution %~ .-~
of smaller components
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The effect is to re-equilibrate the contributions
q of each state of the HMM



Conclusions & future work

= Non linear normalization of generative
embedding spaces may be very useful, but

—not in all cases
— not for all nonlinear mappings
s Why it works is still an issue

— A direction we are investigating

- effect of de-diagonalizing the kernel matrix (as in
Scholkopf et al., ECML 2002)

m Choice of parameters is of course crucial



THANK YOU!

QUESTIONS?



