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André F. T. Martins3, Manuele Bicego1,2, Vittorio Murino1,2, Pedro M. Q. Aguiar4, Mário A. T. Figueiredo3

1 Computer Science Department, University of Verona - Verona, Italy – 2 Istituto Italiano di Tecnologia (IIT) - Genova, Italy
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Motivations and Main Idea

THE CONTEXT: GENERATIVE EMBEDDINGS

•Classification of structured objects (e.g., shapes) is typically addressed with generative

models (able to deal with non vectorial representations)

•Discriminative classifiers (e.g., SVM) typically outperform generative models, but

prefer a vectorial representation.

•Generative embeddings represent hybrid generative-discriminative approaches, which

exploit a learned generative model to map a possibly non vectorial object into a vector

space, where discriminative classifiers can be used.

Using a generative embedding

involves three steps:

(i) define and learn the

generative model used

to build the embedding;

(ii) define the mapping from

object space to the

generative embedding space;

(iii) discriminatively learn

a (maybe kernel) classifier

on the adopted feature space.

NOTE The literature on generative embeddings is essentially focused on step (i) and

(ii), usually adopting some standard off-the-shelf tool (e.g., an SVM with a linear or

RBF kernel) for step (iii).

THE PROPOSAL Here we follow a different route, testing the recently proposed

non-extensive information theoretic kernels on several Hidden Markov Models-based

generative embeddings.

The generative embeddings

Notation Components of a HMM with N states: A = (aij) (the transition matrix),

π = (πi) (the initial state probability distribution), B = (bi) (the set of emission

probability functions)

Generative embedding: it is defined by φ(o, λ), which uses a trained HMM λ (or

more than one) to map a sequence o = (o1, ..., oT ) into a vector

1. The Classical Fisher Score Embedding (FSE) [Jaakkola et al. 99]

φFSE(o, λ) =

[

∂ log(P (O = o|λ)

∂λ1
, · · · ,

∂ log(P (O = o|λ)

∂λL

]⊤

where λi represents one of the L parameters of the model λ

2. The Marginalized Kernel Embedding (MKE) [Tsuda et al. 02]

φMKE(o, λ) = [msi (o, λ)], ∀s = 1..S, i = 1..N

where

msi (o, λ) =
1

T

∑

q∈{1,...,N}T

P (Q = q|O = o, λ)
T

∑

t=1

I (ot = s ∧ qt = i) ,

3. The State Space Embedding (SSE) [Bicego et al. 09]

φSSE(o, λ) =





T
∑

t=1

P (Qt = 1|o, λ), · · · ,
T

∑

t=1

P (Qt = N |o, λ)





⊤

4. The Transition Embedding (TE) [Bicego et al. 09]

φTE(O, λ) =

































T−1
∑

t=1

P (Qt = 1, Qt+1 = 1|o, λ)

T−1
∑

t=1

P (Qt = 1, Qt+1 = 2|o, λ)

...
T−1
∑

t=1

P (Qt = N, Qt+1 = N |o, λ)

































The information Theoretic Kernels

Given two probability measures p1 and p2, representing two objects, we tested several

information theoretic kernels (ITKs) [Martins et al. 09]:

1. k JS – Jensen-Shannon kernel:

k JS(p1, p2) = ln(2) − JS(p1, p2),

with JS(p1, p2) being the Jensen-Shannon divergence

JS(p1, p2) = H
(

p1 + p2

2

)

−
H(p1) + H(p2)

2
,

H(p) is the usual Shannon entropy.

2. k JT

q – Jensen-Tsallis (JT) kernel:

k JT

q (p1, p2) = lnq(2) − Tq(p1, p2),

where lnq(x) = (x1−q − 1)/(1 − q) is the q-logarithm,

Tq(p1, p2) = Sq

(

p1 + p2

2

)

−
Sq(p1) + Sq(p2)

2q

is the Jensen-Tsallis q-difference, and Sq(r) is the Jensen-Tsallis entropy, defined, for

a multinomial r = (r1, ..., rL), with ri ≥ 0 and
∑

i ri = 1, as

Sq(r1, ..., rL) =
1

q − 1



1 −
L

∑

i=1

rq
i



 .

3. kA
q and kB

q two versions of the Jensen-Tsallis kernel applicable to unnormalized mea-

sures (see the paper for more details)

Experimental Evaluation

Details

•Tests on a 2D shape recognition task (shapes are characterized with a sequence of

curvature values), with the Chicken Pieces Database (446 silhouettes of chicken pieces

- 5 classes). Accuracies computed with averaged hold out CV (10 repetitions)

• 3-state HMMs with Gaussian emission densities

• SVM with IT kernels on generative embeddings

•C of SVMs and q of the information theoretic kernels were optimized by 10-fold cross

validation (CV) on the training set

Results

Emb. Linear k JS = k JT

1 k JT

q kA
q kB

q

φSSE 0.7387 0.7230 0.7095 0.7995 0.8221

φSSE (S) 0.7342 0.7230 0.7005 0.8086 0.7950

φTE 0.7703 0.7545 0.7545 0.8243 0.8356

φTE (S) 0.8311 0.7995 0.7973 0.8176 0.8198

φFSE 0.6171 0.6194 0.6261 0.7568 0.6689

φFSE (S) 0.8108 0.8243 0.8243 0.8311 0.8243

φMKE 0.6712 0.7095 0.7455 0.8243 0.8063

φMKE (S) 0.7477 0.6937 0.7162 0.7995 0.8063
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(Left) Classification accuracies. “(S)” refer to experiments where the embeddings were standardized

(centered and scaled to unit variance). (Right) SVM accuracies with several kernels for the Transition

Embedding, as a function of q.

Comparative Analysis
Methodology Accuracy (%) Reference

1-NN + Levenshtein edit distance ≈ 0.67 [18]

1-NN + approximated cyclic distance ≈ 0.78 [18]

KNN + cyclic string edit distance 0.743 [19]

SVM + Edit distance-based kernel 0.811 [19]

1-NN + mBm-based features 0.765 [6]

1-NN + HMM-based distance 0.737 [6]

SVM + HMM-based entropic features 0.812 [21]

SVM + HMM-based Top Kernel 0.808 [22]

SVM + HMM-based FESS embedding + rbf 0.830 [22]

SVM + HMM-based non linear Marginalized Kernel 0.855 [8]

SVM + HMM-based clustered Fisher kernel 0.858 [3]
Comparative Results on the Chicken data.
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