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MOTIVATIONS AND MAIN IDEA

THE INFORMATION THEORETIC KERNELS

THE CONTEXT: GENERATIVE EMBEDDINGS

Given two probability measures p; and ps, representing two objects, we tested several

e Classification of structured objects (e.g., shapes) is typically addressed with generative information theoretic kernels (ITKs) [Martins et al. 09]:

models (able to deal with non vectorial representations) 1. k”* — Jensen-Shannon kernel:

e Discriminative classifiers (e.g., SVM) typically outperform generative models, but

5(pr, p2) = In(2) = JS (1, po)

prefer a vectorial representation.

with JS(p1, ps) being the Jensen-Shannon divergence

JS(p1, p2) = H<p1 42rp2> H(plng(Z?Q)’

e Generative embeddings represent hybrid generative-discriminative approaches, which

exploit a learned generative model to map a possibly non vectorial object into a vector

space, where discriminative classifiers can be used.
H(p) is the usual Shannon entropy.
2. k" — Jensen-Tsallis (JT) kernel:

0 Using a generative embedding

imvolves three steps:

Sequences (possibly

of different length) quT(PbM) = Iny(2) — Ty(p1, p2),

(i) define and learn the

generative model used

where In,(z) = (277 —1)/(1 — ¢) is the ¢-logarithm,

> to build th bedding:
O Dul ¢ empedding; - ( ) _ g D1+ P2 Sq(p1) + Sq(pQ)
q P1,P2) — q 9 24
Mapping . :
(ii) define the mapping from is the Jensen-Tsallis g-difference, and S,(r) is the Jensen-Tsallis entropy, defined, for

object space to the

a multinomial r = (rqy, ..., ry), with r; > 0 and Y_;r; = 1, as

generative embedding space;

! L
1 Sy(r1yoyrp) =——1=> rl|.
*_ o Feature space (iii) discriminatively learn q—1 1
e® o o (generat_we . N
® e embedding space) a (maybe kernel) classifier 3. kg;l and kf two versions of the Jensen-Tsallis kernel applicable to unnormalized mea-
> on the adopted feature space. .
sures (see the paper for more details) /
NNOTE The literature on generative embeddings is essentially focused on step (i) and S~
(ii), usually adopting some standard off-the-shelf tool (e.g., an SVM with a linear or \
RBF kernel) for step (iii). EXPERIMENTAL EVALUATION
THE PROPOSAL Here we follow a different route, testing the recently proposed Details

non-extensive information theoretic kernels on several Hidden Markov Models-based

'1THE GENERATIVE EMBEDDINGS

Notation Components of a HMM with NV states: A = (a;;) (the transition matrix),

e Tests on a 2D shape recognition task (shapes are characterized with a sequence of

generative embeddings.

= curvature values), with the Chicken Pieces Database (446 silhouettes of chicken pieces

- 5 classes). Accuracies computed with averaged hold out CV (10 repetitions)

e 3-state HMMs with Gaussian emission densities

e SVM with IT kernels on generative embeddings
e (' of SVMs and q of the information theoretic kernels were optimized by 10-fold cross

7t = (m;) (the initial state probability distribution), B = (b;) (the set of emission validation (CV) on the training set
probability functions) Results
Generative embedding: it is defined by ¢(0, A), which uses a trained HMM X (or
. Emb.  |Linear|k™ =k/T| kT | ki | kP
more than one) to map a sequence o = (o4, ..., or) into a vector ' 1 | "q q q
P 0.7387| 0.7230 [0.7095| 0.7995 | 0.8221 08 v
1. The Classical Fisher Score Embedding (FSE) [Jaakkola et al. 99 S8 (S) |0.7342| 07230 07005 0.8086 | 0.7950
A los( PO \ Moa( PO a7 O 0.7703| 0.7545 [0.7545| 0.8243 |0.8356 | ;°°
(0, A) = 0g(P(O = o )7 e 0g(P(O = 0|A) STE (S) 0.8311] 0.7995 |0.7973| 0.8176 | 0.8198 | ¢
_ OAl OAL S 106171 0.6194 0.6261| 0.7568 | 0.6689 | |
where \; represents one of the L parameters of the model A ™" (5) |0.8108] 0.8243 10.8243|0.8311 ) 0.8243 assl
o . pMhE 0.6712] 0.7095 ]0.7455| 0.8243 | 0.8063
2. The Marginalized Kernel Embedding (MKE) [Tsuda et al. 02] M<E (907477 06937 |0.7162] 0.7995 | 0.8063 iy

q

"0, A) = mg (0, N)],Vs =1..5,i=1..N (Left) Classification accuracies. “(S)” refer to experiments where the embeddings were standardized
(centered and scaled to unit variance). (Right) SVM accuracies with several kernels for the Transition

where .
Embedding, as a function of q.

msi(o,)\):% S P@Q=qlO=0A) S T(oi=shg—1i).

Comparative Analysis

Bl = Methodology Accuracy (%) Reference
3. The State Space Embedding (SSE) [Bicego et al. 09] I-NN 4 Levenshtein edit distance ~ 0.67 18]
1-NN + approximated cyclic distance ~ (.78 18]
SSE j d 1 KNN + cyclic string edit distance 0.743 19
¢ (0, A) = Z P(Qy = 1o, A), - -, Z P(Qy = Nlo, A) SVM + Edit distance-based kernel 0.811 19
L= = - 1-NN 4+ mBm-based features 0.765 6]
4. The Transition Embedding (TE) [Bicego et al. 09 I-NN + HMM-based distance 0.737 6
i i SVM + HMM-based entropic features 0.812 21]
=1 SVM + HMM-based Top Kernel 0.808 22
; P(Q; =1, Q1 = 1|0, A) SVM + HMM-based FESS embedding + rbf 0.830 22
T—1 SVM + HMM-based non linear Marginalized Kernel 0.855 8]
50, ) = Z P(Q: = 1,Qi1 = 2|0, A) SVM + HMM—based clustered Fisher kernel 0.858 3]
) t=1 Comparative Results on the Chicken data.
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