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1. Goal

•Development of a principled (soft) clustering approach
built upon the evidence accumulation framework.

• Evidence accumulation allows to combine the results
of multiple clusterings into a single similarity matrix,
called co-association matrix, by viewing each cluster-
ing result as an independent evidence of pairwise data
organization.
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2. Problem Setting

•O = {1, . . . , n} is the set of data object to cluster.

•K is the number of desired classes.

• E = {cli}Ni=1 is the esemble of N clusterings of O.
The ensemble is obtained by running different algo-
rithms with different. parametrizations on (possibly)
sub-sampled versions of the original dataset.

• each clustering is a function cli : Oi → {1, . . . , Ki}
from the set of objects Oi ⊆ O to a class label.

• Ωij = {p = 1 . . . N : i, j ∈ Op} is the set of indices
of clusterings where i and j have been classified.

•Nij = |Ωij|.

Learn from the ensemble of clustering E how
to cluster the objects into K classes.
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3. Proposed Solution

•We start from the assumption that objects can be softly assigned to clusters.

• For each object i ∈ O we want to estimate an unknown assignment yi, which is a probability distribution over the
set of cluster labels {1, . . . , K}.
• Each assignment is a point of the standard simplex, i.e., yi ∈ ∆K , where

∆K = {x ∈ RK+ : ‖x‖1 = 1} . (standard simplex)

•Assuming independent cluster assignments, the probability of objects i and j to occur in a same cluster can be
derived as y>i yj.

• Let Y >Y be the n× n matrix of object co-occurrence probabilities, where Y = (y1, . . . ,yn) ∈ ∆n
K .

• For each i, j ∈ O, let Xij be a Bernoulli r.v. indicating whether objects i and j occur in a same cluster.

•Note that E[Xij] = y>i yj according to our model.

• From the clusterings ensemble we collect Nij independent realizations x
(p)
ij (where p ∈ Ωij), which are given by

x
(p)
ij =

{
1 if clp(i) = clp(j) ,

0 otherwise .
(observation of co-occurrence)

• By taking their mean, we obtain the empirical probability of co-occurrence cij, which is the fraction of times objects
i and j have been assigned to a same cluster:

cij =
1

Nij

∑
p∈Ωij

x
(p)
ij . (empirical co-occurrence probability)

• The matrix C = (cij) is known as co-association matrix within the evidence accumulation-based framework for
clustering [3, 4].

• The matrix C (empirical co-association matrix) is the maximum likelihood estimate of Y >Y (true co-association
matrix) given the observations from the clusterings ensemble E .

•We find a solution Y ∗ of the clustering problem by minimizing the divergence in the least-square sense of the true
co-association matrix from the empirical one with respect to Y :

Y ∗ = arg min ‖C − Y >Y ‖2F
s.t. Y ∈ ∆n

K .
(1)

Solution

4. Baum-Eagon Inequality

Theorem 1. Let X = (xri) ∈ ∆n
k and Q(X) be a homo-

geneous polynomial in the variables xri with nonnegative
coefficients. Define the mapping Z = (zri) = M(X) as
follows:

zri = xri
∂Q(X)

∂xri

/ k∑
s=1

xsi
∂Q(X)

∂xsi
, (2)

for all i = 1 . . . n and r = 1 . . . k. Then Q(M(X)) > Q(X),
unless M(X) = X. In other words M is a growth trans-
formation for the polynomial Q.

Baum-Eagon Inequality [1]

• Baum and Eagon [1] introduced a class of nonlinear transformations
in probability domain.

• This result applies also to inhomogeneous polynomials [2].

• The Baum-Eagon inequality provides an effective iterative means
for maximizing polynomial functions in probability domains.

5. The Algorithm

•We can not use the Baum-Eagon Inequality for optimizing (1) di-
rectly, as we need a maximization of a polynomial with nonnegative
coefficients.

• Consider the following optimization program:

max 2Tr(CY >Y ) + ‖Y >EKY ‖2 − ‖Y >Y ‖2

s.t. Y ∈ ∆n
K ,

(3)

Theorem 2. The maximizers of (3) are minimizers of (1)
and vice versa. Moreover, the objective function of (3) is
a polynomial with nonnegative coefficients in the variables
yki, which are elements of Y .

Equivalence

•We can now use the Baum-Eagon inequality to locally optimize (3).
This leads to the following updating rule for Y = (yki):

y
(t+1)
ki = y

(t)
ki

n + [Y (C − Y >Y )]ki

n +
∑
k y

(t)
ki [Y (C − Y >Y )]ki

Updating rule

• The computational complexity of the proposed dynamics isO(γkn2),
where γ is the average number of iterations required to converge (in
the experiments we kept γ fixed).

6. Experiments

•We conducted experiments on different real data-sets from the UCI Machine
Learning Repository: iris, house-votes, std-yeast-cell and breast-cancer.

•We considered also the image-complex synthetic data-set.

• For each data-set, we produced the clustering ensemble E by running differ-
ent clustering algorithms, with different parameters, on subsampled versions
of the original data-set (the sampling rate was fixed to 0.9).

• The clustering algorithms used to produce the ensemble were the following
[5]: Single Link (SL), Complete Link (CL), Average Link (AL) and K-means
(KM).

•We run each algorithm several times in order to produce clusterings with
different number of classes. For each algorithm and parametrization we
generated 100 data partitions from the subsampled versions of the data-set;
we name such set of partitions as base ensemble.

•Overall, we formed four base ensembles, namely ESL, EAL, ECL and EKM.

•We created a large ensemble EAll from the union of all of the base esembles.

• For each ensemble we created a corresponding co-association matrix, namely
CSL, CAL, CCL, CKM and CAll.

• For each of these co-association matrices, we applied our Pairwise Prob-
abilistic Clustering (PPC) approach, and compared it against the perfor-
mances obtained with the same matrices by the agglomerative hierarchical
algorithms SL, AL and CL. Each method was provided with the optimal
number of classes as input parameter.
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7. Conclusions
• Taking advantage of the probabilistic interpretation of the computed similarities of the the co-association

matrix, derived from the ensemble of clusterings, using the Evidence Accumulation Clustering, we proposed
a principled soft clustering method.

•Our method reduces the clustering problem to a polynomial optimization in probability domain, which is
attacked by means of the Baum-Eagon inequality.

• The new method produces a soft partition of the data. Nevertheless, when converting these soft labels into
a crisp partition the method leads to better results than the competitors.
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