Pairwise Probabilistic Clustering Using Evidence Accumulation

Samuel Rota Bulò ${ }^{[a]}$, André Lourenço ${ }^{[c]}$, Ana Fred ${ }^{[b, c]}$ and Marcello Pelillo ${ }^{[a]}$

${ }^{[a]}$ CVPR Lab @ University of Venice, Italy ${ }^{[b]}$ Instituto Superior Técnico, ${ }^{[c]}$ Instituto de Telecomunicações, Lisbon, Portugal

1. Goal
 2. Problem Setting
 4. Baum-Eagon Inequality

- $O=\{1, \ldots, n\}$ is the set of data object to cluster. - K is the number of desired classes.
- $\mathcal{E}=\left\{c_{i}\right\}_{i=1}^{N}$ is the esemble of N clusterings of O rithms with different. parametrizations on (possibly) sub-sampled versions of the original dataset.
- each clustering is a function $c l_{i}: O_{i} \rightarrow\left\{1, \ldots, K_{i}\right\}$ from the set of objects $O_{i} \subseteq O$ to a class label. - $\Omega_{i j}=\left\{p=1 \ldots N: i, j \in O_{p}\right\}$ is the set of indices
of clusterings where i and j have been classifie of clusterings where i and j have been classified. - $N_{i j}=\left|\Omega_{i j}\right|$.

3. Proposed Solution

We start from the assumption that objects can be softly assigned to clusters.

- For each object $i \in O$ we want to estimate an unknown assignment \mathbf{y}_{i}, which is a probability distribution over the set of cluster labels $\{1, \ldots, K\}$
- Each assignment is a point of the standard simplex, i.e., $\mathbf{y}_{i} \in \Delta^{K}$, where

$$
\Delta_{K}=\left\{\mathbf{x} \in \mathbb{R}_{+}^{K}:\|\mathbf{x}\|_{1}=1\right\} .
$$

(standard simplex)

- Assuming independent cluster assignments, the probability of objects i and j to occur in a same cluster can be derived as $\mathbf{y}_{i}^{\top} \mathbf{y}_{j}$.
- Let $Y^{\top} Y$ be the $n \times n$ matrix of object co-occurrence probabilities, where $Y=\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}\right) \in \Delta_{K}^{n}$.
- For each $i, j \in O$, let $X_{i j}$ be a Bernoulli r.v. indicating whether objects i and j occur in a same cluster.
\bullet Note that $E\left[X_{i j}\right]=\mathbf{y}_{i}^{\top} \mathbf{y}_{j}$ according to our model.
- From the clusterings ensemble we collect $N_{i j}$ independent realizations $x_{i j}^{(p)}$ (where $p \in \Omega_{i j}$), which are given by

$$
x_{i j}^{(p)}= \begin{cases}1 & \text { if } c l_{p}(i)=c l_{p}(j), \\ 0 & \text { otherwise }\end{cases}
$$

(observation of co-occurrence)

- By taking their mean, we obtain the empirical probability of co-occurrence $c_{i j}$, which is the fraction of times objects i and j have been assigned to a same cluster:

$$
c_{i j}=\frac{1}{N_{i j}} \sum_{p \in \Omega_{i j}} x_{i j}^{(p)}
$$

(empirical co-occurrence probability)
-The matrix $C=\left(c_{i j}\right)$ is known as co-association matrix within the evidence accumulation-based framework for clustering [3, 4].

- The matrix C (empirical co-association matrix) is the maximum likelihood estimate of $Y^{\top} Y$ (true co-association matrix) given the observations from the clusterings ensemble \mathcal{E}.
- We find a solution Y^{*} of the clustering problem by minimizing the divergence in the least-square sense of the true co-association matrix from the empirical one with respect to Y

Baum-Eagon Inequality [1]

Theorem 1. Let $X=\left(x_{r i}\right) \in \Delta_{k}^{n}$ and $Q(X)$ be a homogeneous polynomial in the variables $x_{r i}$ with nonnegative coefficients. Define the mapping $Z=\left(z_{r i}\right)=\mathcal{M}(X)$ as follows

$$
z_{r i}=x_{r i} \frac{\partial Q(X)}{\partial x_{r i}} / \sum_{s=1}^{k} x_{s i} \frac{\partial Q(X)}{\partial x_{s i}},
$$

for all $i=1 \ldots n$ and $r=1 \ldots k$. Then $Q(\mathcal{M}(X))>Q(X)$, unless $\mathcal{M}(X)=X$. In other words \mathcal{M} is a growth transformation for the polynomial Q

Baum and Eagon 11 introduced a class of nonininear transformation
in probability domain.

- This result applies also to inhomogeneous polynomials [2].
- The Baum-Eagon inequality provides an effective iterative mean for maximizing polynomial functions in probability domains.

5. The Algorithm

- We can not use the Baum-Eagon Inequality for optimizing (1) directly, as we need a maximization of a polynomial with nonnegative coefficients.
- Consider the following optimization program:
$\max 2 \operatorname{Tr}\left(C Y^{\top} Y\right)+\left\|Y^{\top} E_{K} Y\right\|^{2}-\left\|Y^{\top} Y\right\|^{2}$ s.t. $Y \in \Delta_{K}^{n}$,

Equivalence

Theorem 2. The maximizers of (3) are minimizers (1) and vice versa. Moreover, the objective function of (3) is $y_{k i}$, which are elements of Y.

We can now use the Baum-Eagon inequality to locally optimize (3) This leads to the following updating rule for $Y=\left(y_{k i}\right)$:

```
y}\mp@subsup{y}{ki}{(t+1)}=\mp@subsup{y}{ki}{(t)}\frac{n+[Y(C-\mp@subsup{Y}{}{\top}Y)\mp@subsup{]}{ki}{}}{n+\mp@subsup{\sum}{k}{}\mp@subsup{y}{ki}{(t)}[Y(C-\mp@subsup{Y}{}{\top}Y)\mp@subsup{]}{ki}{}
```

- The computational complexity of the proposed dynamics is $O\left(\gamma k n^{2}\right)$ where γ is the average number of iterations required to converge (in the experiments we kept γ fixed).
- We conducted experiments on different real data-sets from the UCI Machine Learning Repository: iris, house-votes, std-yeast-cell and breast-cance.
- We considered also the image-complex synthetic data-set.
- For each data-set, we produced the clustering ensemble \mathcal{E} by running different clustering algorithms, with different parameters, on subsampled versions of the original data-set (the sampling rate was fixed to 0.9).
- The clustering algorithms used to produce the ensemble were the following [5]: Single Link (SL), Complete Link (CL), Average Link (AL) and K-means (KM).
- We run each algorithm several times in order to produce clusterings with different number of classes. For each algorithm and parametrization we generated 100 data partutions from the subsampled
we name such set of partitions as base ensemble.
Overl, we formed four be
- Overall, we formed four base ensembles, namely $\mathcal{E}_{\mathrm{SL}}, \mathcal{E}_{\mathrm{AL}}, \mathcal{E}_{\mathrm{CL}}$ and $\mathcal{E}_{\mathrm{KM}}$.
- We created a large ensemble $\mathcal{E}_{\text {All }}$ from the union of all of the base esembles.
- For each ensemble we created a corresponding co-association matrix, namely
$C_{\mathrm{SL}}, C_{\mathrm{AL}}, C_{\mathrm{CL}}, C_{\mathrm{KM}}$ and C_{All}.
- For each of these co-association matrices, we applied our Pairwise Probabilistic Clustering (PPC) approach, and compared it against the perfor-
mances obtained with the same matrices by the agglomerative hierarchical mances obtained with the same matrices oy the agglomerative hierarchical
algorithms SL, AL and CL. Each method was provided with the optimal number of classes as input parameter.

7. Conclusions

- Taking advantage of the probabilistic interpretation of the computed similarities of the the co-association matrix, derived from the ensemble of clusterings, using the Evidence Accumulation Clustering, we proposed a principled soft clustering method.

Results with $C_{\text {All }}$

- Our method reduces the clustering problem to a polynomial optimization in probability domain, which is attacked by means of the Baum-Eagon inequality.
- The new method produces a soft partition of the data. Nevertheless, when converting these soft labels into

6. Experiments a crisp partition the method leads to better results than the competitors.

References
II L. E. Baum and J. A. Eagon. An inequality with applications to statisitical entimation
for probabilistic functions of Markov pro-
cesses and to a model for ecology. Bull. cesses and to a model for ecolog., Bull.
Amer. Math. Soo., $73: 360-363,1967$. [2] L. E. Baum and G. R. Sell. Growth transformations for fuctions on manifol cific J. Math., 27:221-227, 1968. ing using evidence accunmulation. In Int.
Conf. Patt Recer ing using evidence accumulation. In
Conf. Patt. Recogn. (ICPR), pages 226
280, 2002. 280, 2002.
[4] A. Fred and A. K. Jain. Combining mul-
tiple clustering using evidence accumula-
tion. IEEE Trans. Pattern Anal. Mation. IEEE Trans. Pattern Ana.
chine Intell, $77(6): 835-850$, 2005, (55) A. K. Jain and R. C. Dubes. Algorithms
for data clustering. Prentice-Hall, 1988 .

