

Ranking with Query-Dependent Loss for Web Search

Jiang Bian¹, Tie-Yan Liu², Tao Qin², Hongyuan Zha¹

Georgia Institute of Technology¹ Microsoft Research Asia²

School of Computer Science

Outline

Motivation

- Incorporating Query Difference into Ranking
 - Position-sensitive query-dependent loss function
 - Learning methods
 - Example query-dependent loss functions
 - RankNet
 - ListMLE
- Experiments and Discussions

Query Difference

Transactional

Search intention

Relational info needs

Queries

Subtopic retrieval

Topic distillation

Position-Sensitive Query Difference

This kind of position-sensitive query difference requires different objectives (loss function) for the ranking model

Incorporate Query Difference into Ranking

- We propose to incorporate query difference into ranking by introducing position-sensitive query-dependent loss functions in the learning process.
- Previous Work:
 - Key idea: employ different ranking functions for different classes/clusters of queries
 - Query type classification for web document retrieval (Kang et al. SIGIR2003)
 - Query-dependent ranking using k-nearest neighbor (Geng et al. SIGIR2008)
 - Incorporating query difference for learning retrieval functions in information retrieval (Zha et al. CIKM2006)
- We propose to learn one ranking function based on querydependent loss function

Outline

Motivation

- Incorporating Query Difference into Ranking
 - Position-sensitive query-dependent loss function
 - Learning methods
 - Example query-dependent loss functions
 - RankNet
 - ListMLE
- Experiments and Discussions

Incorporating Query Difference into Ranking: Query-Dependent Loss Function

$$L_f = \sum_{q \in Q} L(f)$$

- Query level loss
- Having same form among all queries

Diverse ranking objectives implied by different queries

$$L_f = \sum_{q \in Q} L(f;q)$$

- Query level loss
- Each query has its own form

Difficult and expensive in practice to define individual objective for each query

$$L_f = \sum_{q \in Q} \left(\sum_{i=1}^m \frac{P(C_i|q)L(f;q,C_i)}{P(C_i|q)L(f;q,C_i)} \right)$$

Query categorization

- Category level loss
- Each query category has its own form

Query-Dependent Loss based on Query Taxonomy of Web Search

Navigational
$$\searrow$$
 C_N Transactional

The loss should focus on the exact relevant document

Informational $\longrightarrow C_I$

The loss should consider relevant documents which should be ranked in top-K positions

Query-dependent loss function:

$$L(f;q) = \alpha(q)L(f;q,\mathcal{C}_I) + \beta(q)L(f;q,\mathcal{C}_N),$$

$$L(f;q,\mathcal{C}) = \sum_{x \in X_q} (f(x), g(x), p(x); \Phi(q,\mathcal{C}))$$

example-level loss ranking scores ground truth true positions important positions

The example-level loss l contribute to the whole loss if the true rank position p(x) of the example x is included in $\Phi(q,C)$. The actual value of example-level loss is defined by f(x) and g(x)

Learning Methods

- Basic method:
 - To minimize the query-dependent loss function w.r.t. the ranking parameters, denoted as ω

$$L_f = \sum_{q \in \mathcal{Q}} \underline{\alpha(q)} L(\underline{f_{\omega}}; q, \mathcal{C}_I) + \underline{\beta(q)} L(\underline{f_{\omega}}; q, \mathcal{C}_N)$$

- First, obtain pre-defined categorization for each query
 - Navigational: $\alpha(q) = 0, \beta(q) = 1.$
 - Informational: $\alpha(q) = 1, \beta(q) = 0$;
- Then, learn the parameters of ranking functions using traditional optimization methods
 - Gradient descent

Learning Methods

- Query categorization may not be available
- Even the existing query categorization may not be best for ranking
- Unified Method:
 - We propose to learn the ranking function jointly with query categorization
 - Consider query categorization is defined by a set of query features

Parameters for query categorization

$$\alpha_{\gamma}(q) = \frac{\exp(\langle \gamma, \mathbf{z}_q \rangle)}{1 + \exp(\langle \gamma, \mathbf{z}_q \rangle)}, \quad \beta_{\gamma}(q) = \frac{1}{1 + \exp(\langle \gamma, \mathbf{z}_q \rangle)}$$

Features of query

• ...

Learning Methods

- Unified Method:
 - Alternates between minimizing the loss w.r.t. to ω and γ:

while
$$(L_f(\omega_k, \gamma_k) - L_f(\omega_{k+1}, \gamma_{k+1})) > \epsilon$$
 do
$$\omega_{k+1} \leftarrow \arg\min_{\omega} \sum_{q \in \mathcal{Q}} \alpha_{\gamma_k}(q) L(f_{\omega_k}; q, \mathcal{C}_I)$$

$$+ \beta_{\gamma_k}(q) L(f_{\omega_k}; q, \mathcal{C}_N)$$

$$\gamma_{k+1} \leftarrow \arg\min_{\gamma} \sum_{q \in \mathcal{Q}} \alpha_{\gamma_k}(q) L(f_{\omega_{k+1}}; q, \mathcal{C}_I)$$

$$+ \beta_{\gamma_k}(q) L(f_{\omega_{k+1}}; q, \mathcal{C}_N)$$

• We do not need query categorization during testing, thus γ will not be used for ranking during testing -- γ is considered as hidden information in learning

Example Query-Dependent Loss Functions

- RankNet: (pairwise)
 - Original loss function:

$$L(o_{ij}) = -\bar{P}_{ij} \log P_{ij} - (1 - \bar{P}_{ij}) \log(1 - P_{ij})$$

– Query-dependent loss function:

$$L(o_{ij},q) = \underbrace{\sum_{p(i)=1}^{n_q} P(p(i)|x_i,g(x_i))(\underline{\alpha(q)} \cdot \mathbf{1}_{\{p(i) \in \Phi(q,\mathcal{C}_I)\}})}_{\text{q-d loss}} \cdot \underbrace{L(o_{ij}), }_{\text{log}} \cdot \underbrace{L(o_{ij}),$$

Example Query-Dependent Loss Functions

- ListMLE: (listwise)
 - Original loss function:

$$L(f;q) = \phi(\Pi_f(\mathbf{x}), \mathbf{y}) = -\log P_{\mathbf{y}}^k(\Pi_f(\mathbf{x}))$$

Plackeet-Luce model as top-k surrogate loss

- x: the list of documents
- y: the true permutation of document under q
- $\Pi_f(\mathbf{x})$: the permutation ordered by ranking function f
- Query-dependent loss function:

$$L(f;q) = -\underline{\alpha_q \log P_{\mathbf{y}}^{k_I}(\Pi_f(\mathbf{x}))} - \underline{\beta_q \log P_{\mathbf{y}}^{k_N}(\Pi_f(\mathbf{x}))}$$

Navigational: $top-k_N$ surrogate likelihood loss Informational: $top-k_I$ surrogate likelihood loss

Outline

Motivation

- Incorporating Query Difference into Ranking
 - Position-sensitive query-dependent loss function
 - Learning methods
 - Example query-dependent loss functions
 - RankNet
 - ListMLE
- Experiments and Discussions

- Dataset: LETOR 3.0:
 - TREC2003
 - 300 navigational queries, 50 informational queries
 - TREC2004
 - 150 navigational queries, 75 informational queries
 - 64 features for ranking
 - To define query features:
 - Use a reference model (BM25) to find top-50 ranked documents, and take the mean of the features values of the 50 documents as the features of the query
- Compared methods:
 - Ranking algorithms using original loss function (RankNet, ListMLE)
 - Ranking algorithms using query-dependent loss function with predefined query categorization (SQD-RankNet, SQD-ListMLE)
 - Ranking algorithms using query-dependent loss function without pre-defined query categorization (*UQD-RankNet*, *UQD-ListMLE*)
- 5-fold cross validation

Discussions (1)

- Query-specific categories (features) is not available at testing time:
 - They can be viewed as extra tasks for the learner
 - Query-specific categories (features) of training data are transferred into other common features as training signals
 - The extra training signals serve as a queryspecific inductive bias for ranking

Query-dependent loss function vs. query-dependent ranking function

(b) Informational queries

Summary

- Proposed to incorporate query difference into ranking by introducing query-dependent loss functions
- Introduced a new methods for learning the ranking function jointly with learning query categorization
- Exploited the position-sensitive query-dependent loss function on a popular query categorization scheme of Web search and applied it to two specific ranking algorithms, RankNet and ListMLE

Thanks!

Jiang Bian Georgia Tech jbian@cc.gatech.edu

School of Computer Science