A Sketch-Based Distance Oracle for Web-Scale Graphs

Atish Das Sarma (Georgia Tech.), Sreenivas Gollapudi, Marc Najork, Rina Panigrahy (Microsoft Research)

Friend path on Facebook

Need Distance estimate very quickly!

Motivation

- Online Distance Computation on Massive Graphs
 - Distance/path computation on Social Networks
 - Similarity/Relatedness of URLs on the web
 - Building block for other online algorithms
- Road Networks
 - Already solved very efficiently specific to 2D
- Same question on web graphs
 - Guarantees weaker, but more general solutions

Previous Approaches - Dijkstra

Exact Offline Distance Computation

Breadth-First Search

Prohibitively expensive at query time, even if parallelized.

Metric Embeddings

[Bourgain]

Compute the actual distance here

Spanner Construction

[Peleg-Schaffer]

Compact Representation but distance still needs to be computed.

Sketch-based

[Thorup-Zwick]

For all nodes \mathcal{X}

Pre-compute small information

Sketch(x)

At query time combine

Sketch(u)Sketch(v)

Distance estimated

Metric Embeddings can be thought of as Sketch-based

Problem Definition

PRECOMPUTATION:

Preprocess and Store some summary (space about the number of vertices)

At query time, receive $oldsymbol{u}, oldsymbol{v}$

ONLINE:

Quickly estimate the distance d(u,v)

Results (Undirected Graphs)

- Sketch-based algorithm of Thorup-Zwick:
 - Space $O(\log n)$ per node.
 - Query Time $O(\log n)$
 - Distance Approximation (UB) $(2 \log n 1)$

- Metric Embedding of Bourgain, Matousek
 - Same space and (slightly more) query time
 - Distance Approximation (LB) $(2 \log n 1)$

Results (Our Contributions)

- Significant Simplification of Thorup-Zwick
 - Simpler proof of same bounds for simplified algorithm

$$(2 \log n - 1)$$
-approximation

- Easy to implement
- Extend algorithms to Directed graphs (without proof)
- Experimental Results
 - Query Time: Milliseconds (two disk seeks)

 Approximation Error

 - - Undirected 1.2
 - Directed -

Key Technique - Sampling Algorithm

Bourgain Embedding

Sample random set of Green nodes and store distances from all nodes to the set.

A lower bound on d(u,v)

$$d(u,v) \ge |d(u,S) - d(v,S)|$$

$$d(u,S) = \min_{w \in S} d(u,w)$$

Key Technique - Sampling Algorithm (UB)

Idea in Thorup-Zwick

Sample random set of nodes and store nearest node and distance to it from all nodes in the graph.

An upper bound on d(u,v)

$$d(u,v) \le d(u,s) + d(v,s)$$

Since this is true for any S, ideal if nearest in seed set is common to both.

Sparse Sampling

Path may be too long

Dense Sampling

Therefore, need sampled set of "correct" size.

Offline Sketch

u

Sketches

Algorithm (Common Seed)

Algorithm

- Pre-computation: All Sketches known.
- Query Time: u, v
- Online: Retrieve

$$Sketch(u) \supseteq \{(u_0, \delta_0^u), (u_1, \delta_1^u), \dots, (u_r, \delta_r^u)\}$$

 $Sketch(v) \supseteq \{(v_0, \delta_0^v), (v_1, \delta_1^v), \dots, (v_r, \delta_r^v)\}$
(multiple copies)

- Find all t such that $u_t = v_t$
- Set $\tilde{d}(u,v) = \min_t \{\delta^u_t + \delta^v_t\}$

Theorem (similar to Thorup-Zwick)

For Undirected graphs:

$$d(u,v) \le \tilde{d}(u,v) \le (2r-1)d(u,v)$$

Denote d(u, v) by d

Later extend to Directed graphs.

No provable theoretical guarantee

Proof (Undirected)

Consider balls of radius di

If seed set such that only one point in it from $A_i \cup B_i$ which is also in $A_i \cap B_i$

Then this point will be in sketch of both u and v

It follows,

$$\tilde{d}(u,v) \le 2di$$

 $A_i \cap B_i$

u, v in each others' ball but drawn this way for convenience.

Proof (Undirected)

Consider balls of radius di

If
$$\frac{|A_i \cap B_i|}{|A_i \cup B_i|} \ge \frac{1}{2}$$

Then with constant probability there exists seed set S such that:

$$S \cap (A_i \cup B_i) = s$$
$$S \cap (A_i \cap B_i) = s$$

$$S \cap (A_i \cap B_i) = s$$

It follows with const. prob.,

$$\tilde{d}(u,v) \le 2di$$

 $A_i \cap B_i$ This can be made with high probability since each size set selected multiple times.

Proof (Continued)

Only remains to show that for some $1 \leq i \leq \log n$: $\frac{|A_i \cap B_i|}{|A_i \cup B_i|} \geq \frac{1}{2}$

This follows by observing: $A_i \cup B_i \subseteq A_{i+1} \cap B_{i+1}$

Therefore, if r different set sizes: $ilde{d}(u,v) \leq 2di \leq 2rd$

Analysis can be tightened to make it (2r-1)d

Sketch Space: $O(rn^{1+\frac{1}{r}})$

Distance approx: (2r-1)

The space-approximation parameter can be traded off

Theorem (Bourgain-Matousek)

- Same seed sets as before.
- For each node u, and each seed set S store:
 - -d(u,S) (nearest node in set not required)
- Output:

$$\tilde{d}(u,v) = \max_{S} (d(u,S) - d(v,S))$$

Theorem:

$$d(u,v)/(2\log n - 1) \le \tilde{d}(u,v) \le d(u,v)$$

Again the approximate-space parameter can be traded off.

(Upper Bound follows from Triangle Inequality)

Extending Algorithms to Directed

• Store distances and nearest nodes separately for: d(u, S) and d(S, u)

• For estimating d(u, v) use:

$$d(u, S)$$
 and $d(S, v)$

- Theorems do not hold
 - Distances not symmetric.

Experimental Setup

- Web Crawl:
 - 65M webpages, 420M URLs
 - 2.3B edges
- Undirected Distance [1,15]
- Directed Distance
 - Infinite
 - -[1,100]
- Sample nodes for evaluation (find pairs from different distances)

Optimization

- Ignore nodes with zero indegree/outdegree
- Hash seed sets identifiers:
 - Lossy compression but saves space
 - Small error
- Sketch size: $(s+8)k \log n$
 - -k=3 number of copies of seed sets
 - -s=12 size of seed id. 8 bits to store distance.
 - 240, 480 bytes for undirected, directed.

Evaluation Results-Undirected k=1

Directed k=1

Undirected vary k.

Directed vary k

Questions

- Directed graphs have lower bound (no sketchbased algorithm can give reasonable distance estimate)
- Why does our algo perform well on the web graph?
 - Additional structure? (sparsity, special connectivity...?)

Thank You!