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Friend path on Facebook

Distance/shortest path between
YOU and OBAMA?

Too expensive to compute
at query time.

300M nodes
10B edges

Could take a day to compute

Need Distance estimate very quickly!



Motivation

* Online Distance Computation — on Massive
Graphs
— Distance/path computation on Social Networks
— Similarity/Relatedness of URLs on the web

— Building block for other online algorithms

* Road Networks
— Already solved very efficiently — specific to 2D

* Same question on web graphs

— Guarantees weaker, but more general solutions



Previous Approaches - Dijkstra

Exact Offline Distance Computation

Breadth-First Search

Prohibitively expensive
at query time, even if
parallelized.



Metric Embeddings

[Bourgain]

Embed into
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Compute the actual distance here



Spanner Construction

[Peleg-Schaffer]

—

Compact Representation but distance
still needs to be computed.



Sketch-based

[Thorup-Zwick]

For all nodes I

Pre-compute small information

Sketch(x)
_> At query time combine
Sketch(u)
Sketch(v)

Distance estimated

Metric Embeddings can be thought of as Sketch-based



Problem Definition
Graph G

PRECOMPUTATION:

Preprocess and Store some
summary (space about the
number of vertices)

At query time,

receive 1 L., U

ONLINE:

Quickly estimate the
distance 1)
d(u, v



Results (Undirected Graphs)

e Sketch-based algorithm of Thorup-Zwick:
—Space  (J(logn) pernode.

—Query Time  O(logn)
— Distance Approximation (UB) (2 lt'Jg n — l)

 Metric Embedding of Bourgain, Matousek
— Same space and (slightly more) query time
— Distance Approximation (LB) (2 l(Jg n — l)



Results (Our Contributions)

* Significant Simplification of Thorup-Zwick
— Simpler proof of same bounds for simplified algorithm

(2logn — 1)—approximation
— Easy to implement

e Extend algorithms to Directed graphs (without
proof)

* Experimental Results

— gze of_:?reprocessmg stored: 480(3}:9'&3‘3 '”f"fﬁ

— Query Time: 4 r -7 - wo disk'seeks
yIme; J{ vlliseconds

— Approximation Error

 Undirected - l 2
e Directed- 4 ,um
1.05



Key Technique - Sampling Algorithm

Bourgain Embedding

Sample random set of
Green nodes and store
distances from all
nodes to the set.

A lower bound

o d(u,v)

d(u,S) = mind(u,w)

we s



Key Technique - Sampling Algorithm
(UB)

Idea in Thorup-Zwick

Sample random set of
nodes and store
nearest node and
distance to it from all
nodes in the graph.

An upper bound

" d(u,v)

(u,v) < d(u,s)+ d(v, s)

Since this is true for any S, ideal if
nearest in seed set is common to both.



Sparse Sampling

Idea in Thorup-Zwick

Upper Bound
may be too large

Path may be too long



Dense Sampling

Idea in Thorup-Zwick

Maybe no common seed

Not an upper bound

Therefore, need sampled set of “correct” size.



Offline Sketch

r = |logn|




Sketches

S| =2

|Sa| = 27

|Sl| — 9 Repeat a certain
number of times

r = |logn| D S| = 1




u

1{ d(u, -uot) + d(v,ve)}

Algorithm (Common Seed)

(where uy = vy)

()



Algorithm

* Pre-computation: All Sketches known.
* Query Time: ¢4, v
* Online: Retrieve

Sztff( }?(U) :) {(U{ 6 ) (Uflg ()’)‘ij,) L ("UNF? 5
SA ete h( ) :—> {(?’I(]: 5?]) (:Ula 51) sy ('U-r: (5.?:?

» Find all 4 such that U = Vy

* Set (fZ(’U;j "U) — Hlfill{(ﬁi T 5;}



Theorem (similar to Thorup-Zwick)

For Undirected graphs:
d(u,v) < d(u,v) < (2r —1)d(u, v)

Denote d(u,v) by d

Later extend to Directed graphs.
No provable theoretical guarantee



Proof (Undirected)

* Consider balls of radius 1

If seed set such that only one
point in it from A; LU /3;
whichisalsoin A .M 3,

Then this point will be
in sketch of both u and v

It follows,

-

d(u,v) < 2di

u, v in each others’ ball but drawn
this way for convenience.



Proof (Undirected)

* Consider balls of radius 1

-

1A;NB;| 1
t AUB] = 2

Then with constant probability
here exists seed set |§' such that:

S m (A‘_. I\...J Bﬂ) — 8
L(.)T ﬂ (Ad ﬂ Bﬂ) = 5
It follows with const. prob.,

d(u,v) < 2di

A . r‘] B . This can be made with high probability
1 1 . . . .
since each size set selected multiple times.



Proof (Continued)

: : A;NB;
Only remains to show that for some | < 7 < 1(}{3}; T, : |4, i |

s
|-l ; I.__.l.llr_}},' | i

This follows by observing: ij J B.; g 41, v M B.; -1
Therefore, if 1~ different set sizes: r.f.(-u_.: ’EJ) E 2d1 E 21rd

Analysis can be tightened to make it (2!’ 1 )H}

i 1
Sketch Space: (_)(;r--,:-'!{_l_F r )
Distance approx: (2!’ 1 )

The space-approximation parameter can be traded off

Bl | =t



Theorem (Bourgain-Matousek)

Same seed sets as before.
For each node ¢, , and each seed set S store:

— a{(fu1 S) (nearest node in set not required)
Output:

d(u,v) = maxg(d(u, S) — d(v, S))

Theorem:

d(u,v)/(2logn — 1) < d(u,v) < d(u,v)

Again the approximate-space parameter can be traded off.

(Upper Bound follows from Triangle Inequality)



Extending Algorithms to Directed

e Store distances and nearest nodes separately

tor:  d(u,S) and d(S, u)

* For estimating (/(u, v) use:

d(u,S) and d(S,v)
e Theorems do not hold

— Distances not symmetric.



Experimental Setup

Web Crawl:

— 65M webpages, 420M URLs
— 2.3B edges

Undirected Distance [1,15]
Directed Distance

— Infinite

—[1,100]

Sample nodes for evaluation (find pairs from
different distances)



Optimization

* |gnore nodes with zero indegree/outdegree
* Hash seed sets identifiers:

— Lossy compression but saves space
— Small error

* Sketch size: (s + 8)klogn
— Lk = 3 number of copies of seed sets
— 5 — 12 size of seed id. 8 bits to store distance.
— 240,480 bytes for undirected, directed.



Evaluation Results-Undirected k=1
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estimated distance
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estimated distance / true distance
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estimated distance / true distance
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Questions

e Directed graphs have lower bound (no sketch-
based algorithm can give reasonable distance

estimate)

 Why does our algo perform well on the web
graph?
— Additional structure? (sparsity, special
connectivity...?)



Thank You!



