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Biological networks

Multi-scale
Regulatory networks
Metabolic networks
Signaling pathways

Mathematical model
stochastic nature
dynamical systems

Challenge
nonlinear
partially observed
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Quantitative models of Biological Networks

System of ODE’s

dx
dt

= f(x(t), u(t); θ)

x(t) : state variables at time t
protein concentrations
mRNA concentrations
metabolite concentrations

f : encodes the structure of the system
nonlinear function
Michaelis-Menten kinetics
Mass action kinetics
...

θ: parameter set (kinetic parameters, rate constants,...)

u(t): input variables at time t
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Reverse Engineering of Biological Networks

Given

An ODE model :
dx(t)

dt
= f(x(t), u(t); θ)

A partially and noisy observation model:

y(t) = H(x(t), u(t); θ) + ε(t)

where H is a nonlinear observation function, ε(t) is a i.i.d noise

A sequence of observed data : y1:K = {y1, ..., yK} at time t1, t2, ..., tk

Goal

Estimation of parameters θ

Estimation of states x(t)
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Nonlinear State-Space Model

Continuous time ODE model

dx(t)
dt

= f(x(t), u(t); θ)

y(t) = H(x(t), u(t); θ) + ε(t)

The corresponding discrete-time state-space model

The system at discrete-time points t1, ..., tK

x(tk+1) = F(x(tk ), u; θ)

y(tk ) = H(x(tk ), u(tk ); θ) + ε(tk )

with

F(x(tk ), u; θ) = x(tk ) +

∫ tk+1

tk

f(x(τ), u(τ); θ)dτ
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Bayesian inference

Given:

Prior distribution over the initial state and parameters: p(x1, θ)

A transition model: p(xk |xk−1, θ)

An observation model: p(yk |xk , θ)

A sequence of observations: y1:K = {y1, ..., yK}

Estimating the posterior distributions

The filtering distribution: p(xk , θ|y1:k )

The smoothing distribution: p(xk , θ|y1:K )
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Recursive Bayesian Filtering

Suppose that θ is known, recursively calculate the filtering distribution of the
states p(xk |y1:k )

Two steps

1 Prediction: p(xk+1|y1:k ) =
∫

p(xk+1|xk )p(xk |y1:k )dxk

2 Update:

p(xk+1|y1:k+1) =
p(yk+1|xk+1)p(xk+1|y1:k )

p(yk+1|y1:k )

where:
p(yk+1|y1:k ) =

∫
p(yk+1|xk+1)p(xk+1|y1:k )dxk+1

Analytical solution obtained only when F, H are linear and p(x1) and ε
are Gaussian → Kalman Filter

When F, H are nonlinear, the integrals are usually intractable.
Approximate solutions are needed!
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Nonlinear SSM→ Approximate Solutions

Gaussian Approximations:
Extended Kalman Filter [Jazwinski 1970]
Unscented Kalman Filter [Julier and Uhlmann 1995-2000]

Sequential Monte Carlo Methods [Gordon 1996, Doucet 1998]
Particle filters

Variational Methods [Ghahramani 1999, Valpola 2002]
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Gaussian Approximations

Basic problem: Nonlinear transformation of a random variable:

y = F(x)

Given:
x = E(x) Px = E

[
(x− x)(x− x)>

]
Find:

y = E(y) Py = E
[
(y− y)(y− y)>

]
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Nonlinear transformation

Table: EKF vs UKF

EKF UKF
Linearize F: Compute sigma-points:

A = ∂F
∂x {Xi} =

{
x + γ

√
Px x− γ

√
Px

}
Transform sigma-points:

y = F(x) Py = A>PxA Yi = F(Xi)
Reconstruct posterior statistics:

y =
∑

i

αiYi Py =
∑

i αi(Yi − y)(Yi − y)>
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Unscented Kalman Filter

Deterministic sampling method, number of sigma points is small → fast

No need to calculate derivatives (Jacobians, Hessians, etc.)

Exact to 2nd order of Taylor series expansion for both mean and
covariance.

Can be extended to capture higher-order statistics (skew, kurtosis, etc.)
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Parameter Estimation

Augmented state approach

θk+1 = θk

x(tk+1) = F(x(tk ), u; θk )

y(tk ) = H(x(tk ), u(tk ); θk ) + ε(tk )

Joint state and parameter estimation
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Repressilator

[Elowitz, Nature 2000]

dr1

dt
= vmax

1
kn

12

kn
12 + pn

2
− kmRNA

1 r1

dr2

dt
= vmax

2
kn

23

kn
23 + pn

3
− kmRNA

2 r2

dr3

dt
= vmax

3
kn

31

kn
31 + pn

1
− kmRNA

3 r3

dp1

dt
= k1r1 − kprotein

1 p1

dp2

dt
= k2r2 − kprotein

2 p2

dp3

dt
= k3r3 − kprotein

3 p3

mRNAs are observed, proteins are hidden

mRNA and protein degradation rate constants are supposed to be known

Estimate 9 parameters
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State Estimation
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JAK-STAT signaling pathway

[Swameye, PNAS 2003]

ODE:
ẋ1(t) = −a1x1(t)u(t) + 2a4x4(t)1{t≥τ}
ẋ2(t) = a1x1(t)u(t)− 2a4x2

2 (t)
ẋ3(t) = −a3x3(t) + x2

2 (t)
ẋ4(t) = a3x3(t)− a4x4(t)1{t≥τ}

Observed variables

y1 = x2 + 2x3

y2 = x1 + x2 + 2x3

Experimental data: 16 time points

θ = (a1, a3, a4)
> is the parameters to be estimated
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Prediction vs Experimental data
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Conclusion
A general framework based on nonlinear state-space models for describing
biological networks
Bayesian inference based on UKF for estimating parameters and hidden
states from noisy and partially observed data

Ongoing work
Unscented Kalman smoothing
Particle smoothing
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