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…joint work with Will Smith



The Image Formation Process
 Intrinsic features:

+ +

 Extrinsic parameters:

=+ Lights (position, colour, direction)

Shape Texture/Albedo
BRDF

Viewpoint and viewing direction

Image



Graphics and vision in inverse 
relationship
 Graphics: select albedo map and 

reflectance function to expedite realistic 
synthesis.

 Computer vision: analyse image contents 
to recover shape and texture (albedo) using 
assumed reflectance model.



Shape-from-shading
 Photoclinometry, inverse-rendering
 3D shape from a single image
 Shading conveys surface orientation and material properties



SFS in Humans
 Humans can perform shape-from-shading well
 Incorporate assumptions to help solve the problem
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Facial SFS in Humans
 Assumptions can be overridden when interpretation would be 

inconsistent with prior knowledge

 This motivates developing class-specific approaches




Shape from Shading

Overview



Problem with SFS
Convex-concave  ambiguities result in implosions of 
facial features



Aim in talk

 Use statistical model to recover facial shape 
without problems associated with concave-
convex ambiguity.

 Estimate the intrinsic facial texture (albedo map) 
when shadowing present.

 Use reconstructions to test neural representation 
of faces via brain imaging experiments.



Papers

 Smith and Hancock, IEEE PAMI 2006.

 Ewbank, Smith, Hancock and Andrews, 
Cerebral Cortex, 2008.



Statistical Model for Facial 
Shape-from-shading

Model couched in surface 
normal domain



Recovering facial shape from 
single images
 Many attempts to apply classical shape-from-

shading methods to faces.

 Appealing since  the surface height function can 
be recovered using a single image (under 
controlled lighting).

 However solution has been elusive since 
practical obstacles include concave/convex 
ambiguity, variable albedo and self-shadowing.



….also problems with albedo variations and shadows



…..devil resides in the detail



Approach
 Extend point-distribution models to surface 

normals, and use them to represent variations in 
surface shape. 

 Train model using data from a range sensor and 
fit it to brightness data using constraints provided 
by Lambert’s law.

 Recovered 3D surface can be used for 
recognition (e.g. biometric analysis)  or synthesis 
(generating avatars etc).



Methological  contribution
Statistical modelling of surface orientation data 
is problematic since angle differences are not 
meaningful.

Use ideas from cartography to develop Cartesian 
representation of surface normal data.

Use representation to learn distribution of face shape and 
show how to fit model to image data using constraints 
provided by Lambert’s law (model-based shape-from-
shading). Solves problems with concave-convex inversion.



Geometric Shape-from-shading

 Constrain surface normals to fall on cone with axis in the light source 
direction and apex angle arccos I

 Use apparatus of robust statistics to develop a curvature sensitive 
method for surface normal smoothing.

 Initialise surface normals using the image gradient.

 Use resulting surface normal data to perform 3D object recognition 
from 2D images using surface curvature attributes. Also explore use of 
needle maps for view synthesis.

Develop a geometric framework for shape-from-
shading (Worthington and Hancock, PAMI 99 and 
PAMI 2001.



Geometric SFS

(Worthington and Hancock ‘99)

Surface normal must fall on a cone 
whose axis is light source direction 
and whose opening angle is 
determined by image brightness.

snI .=



Statistical model



Statistical Surface Normal Model

 Our training data consists 
of an ensemble of K range 
scanned heads:

 We calculate a field of surface 
normals (a needle-map) from 
each sample:



Method
 Use range data to construct a statistical model for 

variations in surface orientation.

 Align range images and use gradient of range data to 
estimate surface normal directions

 Convert surface normal data into a convenient Cartesian 
form and apply PCA.

 Fit model to data so that it satisfies Lambert’s law.

 Model imposes correct pattern of convexity/concavity 
on integrated field of surface normals.



Normals from range data

 Consider surface with height function

 Consider a point on the surface where the 
unit  surface normal is n.
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Statistical model for surface 
normals
 Angular data is more difficult to model 

statistically than Cartesian data.

 Problem arises from angle wrap-around, 
and means that angular variance statistics 
are not meaningful.

 Some work (e.g. Heap and Hogg) has 
extended PDM’s to polar co-ordinates.



….problem with angles
Cant compute meaningful statistics from
angular data. The reason for this is that a
small change in the direction of a vector
can be recorded as large change in angle.

Example: Consider a short walk
across the pole. The change in
latitude is small, but small distances
moved can give rise to very large
changes in longitude,

X

5 degrees

185 degrees

Solution is to convert angular data to a
sensible Cartesian form



Use ideas from cartography
 At each point on face represent 

distribution of surface normals from 
training data as points on a unit 
sphere. A surface normal is a point 
on the sphere.

 Use equidistant azimuthal projection 
to project  points  from sphere onto 
tangent plane to mean direction on 
sphere.

 Capture variations in face shape 
using point distribution on  plane.



Equidistant azimuthal projection 
At each image location the set of different surface normals in the
training set is represented on a sphere of unit radius.

Co-latitude is zenith angle and longitude is azimuth angle of surface
normal

Construct a tangent plane to the sphere at the point local mean surface
normal direction.

Project points from sphere (surface normals) onto the tangent plane
using the equidistant azimuthal projection.

Projection preserves the distance to the mean normal on the sphere.

Surface normals become points on the tangent plane.

Point-distribution model describes statistical properties of projected
surface normals.
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From normals to angles
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The projection



Encoding the projection
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Encode the transformed co-ordinates as a long-
vector for each training pattern
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Stack long-vectors to form data 
matrix

Training data must be 
very carefully aligned.



Covariance matrix eigenvectors
Construct covariance matrix (long vectors have zero mean)

TDD
K

L 1
=

Locate eigenvectors of L by applying Sirovich snapshot 
method to
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Eigenvectors of L



Model parameters

The mean  long-vector is  the null-vector. Hence 
deformed field of EAP normals is deformed according 
to

bU Φ=~

Best fit parameter vector

Ub TΦ=



Data used for training
Max Plank Institute: collected 
with Cyberware 3030PS scanner; 
100 males and 100 females. Data 
aligned using manual landmarks.



Learn model from 
laser range finder 
images

 Captures 
variations in face 
shape

 Displacements 
from average 
face.



Fitting the model to image 
brightness data and surface 
height recovery

Estimating shape-parameters 
from brightness images



Fitting algorithm
 Make an initial estimate of field of surface normals 

using SFS. Convert them to points using EAP.

 Find best fit model parameters. Recover best fit set of 
EAP co-ordinates. Transform best-fit co-ordinates 
back into polar representation (onto sphere) using 
inverse EAP. Gives field of surface normals.

 Rotate best-fit normals onto nearest location on 
irradiance cone.  Resulting normals satisfy Lambert’s 
law.

 Iterate model-fitting and cone-constraints until 
convergence is reached.
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Surface recovery

…..use Frankot and Chellappa Fourier 
domain integration method.

However, surface heights can be modelled statistically 
using a coupled model (…later).



Iterative model fitting
 Overcomes problems of false concavities

SN’s

SFS 

Surface 
from best 
fit SN

Surface 
from cone 
SN



Estimating albedo



Albedo estimation

Idea: At convergence differences between on-cone 
normals and best-fit normals measure departures from 
Lambert’s law. Provided that there are no specularities 
present, these differences can be ascribed to variations 
in facial albedo.

Albedo estimate

sn
I

fit .
=ρ



Difference between cone and fit 
normals



Albedo with varying illumination 
direction



Comparison with Blake’s method



View synthesis

 Re-illuminate with  Lambertian reflectance using 
estimated albedo map and variable light source:

 Texture map onto surface reconstructed from 
surface normals using F+C integration method.

 Rotate rendered surface to obtain new poses.

newfitestsynth snI .ρ=



View synthesis with variable 
illumination

Orig. Alb.



Rotated pose



Pose and illumination varied



Recovery of Local Shape Features



Dealing with self shadowing



Robust fitting and shadow maps

 Weight against pixels with poor brightness 
error.

 These are locations of shadows or severe 
image noise.

 Allows recovery of a shadow map.



Iterative robust estimation

)()()( ttTt UWb Φ=
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Weighted estimate of 
parameter vector

Weight matrix given by 
error residuals



Shadow detection

 Perform surface integration to recover 
height function.

 For pixels with low weight, ray-trace from 
light source.

 If ray intersects surface, then pixel is in 
shadow.



Results of robust fitting

original shadow weights Orig. Robust Est. shad.



Real world 
examples



Real world data: effect of light 
source direction

Input

Estimated 
shadow map

Frontal 
illumination

Varying light source direction



Recognition

 Use parameter vector b for recognition, 
augmented with facial albedo map.

 Competes with number of well known methods 
(harmonic bases, 9 points of light, etc).

 Can be used to perform gender classification and 
construct facial shape-spaces.



Shape spaces
 In parameter space, direction corresponds to identity

and length corresponds to distinctiveness

 Identity or “space of plausible faces” forms a manifold –
hyperellipse (or hypersphere if normalise dimensions by 
eigenvalues)



Geodesic or Euclidean steps?



Non-Euclidean data

 Arises when data is sampled from a manifold, 
rather than a Euclidean space.

 Examples include directional data 
(hyperspherical) and tensor-MRI (half-cone).

 Analysis tools limited (how to define mean and 
covariance or analyse modes of variance)



Non-metricity

 When characterised in terms of 
disimilarities, data can display non-meyric 
artefacts.

 Characterised by negative eigenvalues of 
the disimilarity matrix.



Prior Work

 Pennec – developed framework for analysing 
statistics of data residing on a manifold.

 Ayache – uses methods to develop algorithms for 
analysis of tensor-MRI data.

 Joshi+Fletcher – develop manifold analogue of 
PCA – principal geodesic analysis.



Aims in this talk

 Show how framework can be used to develop 
algorithms for analysis of directional data.

 Filtering and diffusion smoothing algorithms.

 Learning statistical shape-models.

 Classification and clustering.



Data on a manifold
Lie group representation



Illustration of the geometry of the tensor space 

Local coordinate system, tangent space, exponential 
map and Logarithmic map at q of manifold M.



 Exponential map: takes points from manifold 
onto tangent plane so as to preserve geodesic 
distance. Euclidean distance on tangent-plane  
equals geodesic distance on manifold.

 Logarithmic map is inverse of exponential 
map. Puts points back on manifold, so that 
geodesic distance is equal to Euclidean distance 
on tangent plane.



Statistics on Riemannian 
Manifolds

Gives more elegant update 
algorithm (IJCV 2009).



Exponential map of surface 
normal distribution

Use principal geodesic 
analysis (Fletcher, Pizer) to 
develop compact needle map 
update equation:

……strongly liked to recent work on statistics on Riemannian 
manifolds by Pennec and by Faugeras.



Spherical median

 Intrinsic mean 

 Recursive estimation
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Principal geodesic directions

 Leading geodesic:

 Remainder found recursively

2
1||||1 )]([maxarg i

i
nLog∑== µν νν

( ) ( )22
1

1
1|||| )()(maxarg iij

i

k

j
k nLognLog µµν ννν += ∑∑

−

=
=



Model parameters using PGA

 Normals

 Best fit parameter vector

 In terms of covariance matrix
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Surface normal update

 Rotations onto irradiance cone become 
simple in terms of operations on 
exponential and logarithmic maps
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Iterative robust estimation
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Non-Lambertian reflectance
Allow for diffuse and specular 
reflection (IJCV 2010).



Non-Lambertian SFS
• Faces do not strictly obey Lamberts law, 
• Torrance and Sparrow reflectance model [Torrance&Sparrow 

1967]

– Brightness error

– Gradient descent is used to locate the surface normal 
minimizing the brightness error:
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Minimising the Brightness Error
Lambertian:



Minimising the Brightness Error
Torrance and Sparrow:



Minimising the Brightness Error
 Approximate gradient of brightness error function in 

terms of a vector on the tangent plane to the sphere:

Exponential map 
transforms points 
on tangent plane 
to points on 
sphere:



Minimising the Brightness Error
 Solve minimisation using gradient descent:

 2 step algorithm generalises Worthington and Hancock 
algorithm to arbitrary reflectance models:

 Step 2 is solved using gradient descent with result of step 1 as 
initialisation

 Critically dependent on choice of regularization constraint



Reflectance parameters

L – Linear least squares

ρd – Rearrange radiance function. Solve for each pixel 
independently, i.e. spatially varying

ρs and ν – Non-linear least squares. Fixed across image, i.e. 
specular reflectance assumed homogenous



Real world data



Estimated radiance function



Synthesised views



Shape Recovery Results



Colour Shape Recovery Results



Non-frontal Illumination
Correcting for non-frontal 

illumination
Synthesising novel 

illumination (colour & 
direction)



Recognition
Gender determination using 
weighted PGA 



• Method

– Gender classification using the parameterisation of fields 
of facial surface normals, a 2.5D shape representation.

– Facial surface normals are recovered from intensity 
images using non-Lambertian SFS.

– Associate a dissimilarity weight with each pairwise 
distances between labelled data to emphasize the 
interclass separation and improve the gender 
discriminating power of the leading principal 
geodesics.



Experimental Results
• Data

– Ground-truth needle-maps: Max Planck database
100 female and 100 male range Images

– Recovered needle-maps: non-Lambertian SFS on AR face 
database, 94 female and 74 male facial images



Results on ground-truth data
 Discriminating powers of leading 10 

eigenvectors

 Classification 
error rates



Performance of non-Lambertian
SFS



Results on brightness images
 Discriminating powers of leading 10 

eigenvectors

 Classification                                                    
error rates



Results on brightness images
 Visualization of one classification

 using supervised PGA, the misclassified faces 
(21M,20M,22M,7F,5F) are more concentrated in the 
overlapping area.

 Faces 26M, 34M, 11F and 15F which are 
misclassified using standard PGA, are correctly 
classified using supervised PGA

Supervised 
PGA

Standard 
PGA



Future Work

 Investigate the distribution of the weight 
matrices. This may have some potential for 
unsupervised learning.

 Improve the non-Lambertian SFS method to 
recover more accurate facial shape.



Brain imaging study
Explore pose invariance in 
recognition



Full account of work

 Paper forthcoming in ``Cerebral Cortex’’ 
2008:

``The M170  Reflects a Viewpoint 
Dependant Representation for both 
Familiar and Unfamiliar Faces’’



Outline
 Background: Cognitive  model and regions of the 

brain.

 Computer vision: generation of stimuli.

 Magneto-encephalographic imaging: detect 
response to stimuli in M170 using SQUIDS 
positioned on cranium.

 Interpretation of results with familiar/unfamiliar 
face stimuli in different poses.



Background
 View dependant representations: Logothetis, 

Bulthoff.

 View invariant representations of face: Young 
and Bruce.

 Functional imaging studies: face selective 
regions in occipital and temporal lobes. Face 
identity processing associated with inferior 
temporal lobe (face fusiform area)  (Grill-
Spector).



Magneto-encephalography

 Currents induced by neuronal activity in 
M170.

 Magnetic flux  generated detected using 
SQUIDS placed on cranium.

 Good temporal resolution but poor spatial 
resolution.







M170

 Face selective potential that 
correlates to successful face 
recognition.

 Delayed for inverted faces.

 Reduced for patients with 
prosopagnosia.



Generating stimuli
 Apply shape-from-shading algorithm (Smith and 

Hancock, PAMI 2006) to frontal images of faces with 
known light source direction.

 Recover facial shape (needle map and surface height 
function) together with albedo (texture) map.

 Generate novel views by rotating height surface and re-
illuminating texture map with different light source 
directions.

 Familiar subjects are famous people (Blair, Bush, 
ClintonX2, Dench, DiCaprio, Clooney, etc).



Famous 
people



Questions to be answered 

 Is M170 involved in the representation of 
identity?

 Does M170 reflect viewpoint dependant or 
viewpoint invariant representation of faces?

 Does M170 differ in response for familiar and 
unfamiliar faces?



Experiment
 Subjects: 9 females and 9 males mean age 23 with good visual 

acuity.

 Localiser scans: determine which sensors respond to faces by 
presenting subjects with familiar faces, unfamiliar faces, inanimate 
objects, places and textures. Images presented in block of 25 (5 
images from each category randomly ordered), each image presented 
for 400ms and screen blanked fro 1100 ms.

 Adaptation scans: Blocks of 12 familiar and unfamiliar faces. Poses 
were 0,2,4,6,4,2,0,-2,-4,-6,-4,-2,0 degrees in the differeent blocks.

 MEG: 248 channels, sampled at 1017.25 Hz. Subject to 1Hz high 
pass and 200Hz low pass cutoff.



Localiser scan
 Locate occipital regions that have higher response to 

familiar/unfamiliar faces than to other objects. 18 
subjects showed right-hemisphere M170 response. 12 
showed additional  left hemisphere response.

 Two way ANOVA analysis (category-hemisphere) of 
peak M170 amplitude shows significant effect of 
category, but not hemisphere, and no interaction between 
them.

 No  difference in mean M170 response for familiar or 
unfamiliar faces.



 MEG map for one subject: Response to 
unfamiliar faces 163ms after presentation 
of stimulus.



 Average MEG waveform for each object 
category in localiser scan.



 Average peak MEG amplitude for each 
object category 



Adaptation scan
 Four-way (identity-hemisphere-familiarity-viewpoint) 

ANOVA showed no effect in any  variable. However, 
significant interactions between hemisphere, identity and 
view.  

 Three-way (identity-fame-viewpoint) showed significant 
effect of viewpoint and strong interaction between 
viewpoint and identity.

 M170 response for same and different  unfamiliar faces 
with angles of 2, 4, and 8 degree angle changes showed 
no differences.



M170 ADAPATATION – VARY VIEWPOINT
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A: unfamiliar faces

B: familar faces



Conclusions 
 Have shown that M170 potential adapts to faces of the 

same identity if they are shown with the same 
viewpoints. 

 Adaptation changes when viewpoint changes.

 Seems to support Logothetis/Bulthoff view dependant 
representation rather than Bruce/Young invariant 
representation.

 View invariant representation may take place at a later 
stage of processing.



The future

 Learn reflectance function as component 
part of coupled model. ARK+ERH have 
shown how learn radiance function using 
Gauss-map representation. Would fit well 
with EAP.

 Analytically understand link between 
surface normal and height eigenmodes, to 
facilitate better recovery of surface.
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