O-IPCAC and its application to EEG classification

A. Rozza, G. Lombardi, M. Rosa, and E. Casiraghi {rozza,lombardi,rosa,casiragh}@dsi.unimi.it

Università degli Studi di Milano

イロン イヨン イヨン イヨン

Alessandro Rozza 0-IPCAC

Outline

- 1 Introduction
 - EEG classification
 - IPCAC
- 2 O-IPCAC
 - Theoretical Problems
 - The Algorithm
- 3 Experimental Evaluation
 - EEG Dataset
 - Results
- 4 Conclusions
 - References

æ ≣ >

0-IPCAC Experimental Evaluation Conclusions Appendix

EEG classification

EEG classification

- Recently this problem is raising a wide interest since it is the fundamental step of Brain to Computer Interface (BCI) systems: the translatation of the brain activity into commands for computers;
- The task of EEG classification is a hard problem:
 - The data are high dimensional;
 - The classes to be discriminated are often highly unbalanced;
 - The selection of discriminative information is difficult;
 - The cardinality of the training set is often lower than the space dimensionality.

0-IPCAC Experimental Evaluation Conclusions Appendix

EEG classification

Existing Approaches

- Feature extraction/selection techniques are generally used;
- This approach causes loss of discriminative information, and might affect the classification accuracy.

Different Approach

• Develop an efficient classifier that deals with high dimensional datasets whose cardinality is lower than the space dimensionality.

- ∢ ≣ ▶

Apply it to the raw data.

0-IPCAC Experimental Evaluation Conclusions Appendix

EEG classification

Existing Approaches

- Feature extraction/selection techniques are generally used;
- This approach causes loss of discriminative information, and might affect the classification accuracy.

Different Approach

- Develop an efficient classifier that deals with high dimensional datasets whose cardinality is lower than the space dimensionality.
 - Apply it to the raw data.

0-IPCAC Experimental Evaluation Conclusions Appendix

EEG classification IPCAC

Isotropic Principal Component Analysis Classifier [5]

IPCAC

A linear two-class classification algorithm, based on a new estimation of the Fisher Subspace [1], assuming points drawn by an isotropic Mixture of two Gaussian Functions.

• The Fisher subspace is spanned by the one-dimensional vector defined as follows:

$$\mathbf{F} = \frac{\mu_A - \mu_B}{\|\mu_A - \mu_B\|} \tag{1}$$

イロト イヨト イヨト イヨト

Training task: In this phase the classifier exploits the training set to estimate the Fisher subspace \mathbf{F} and the thresholding value γ .

Classification task: An unknown test point \mathbf{p} is classified by projecting it on \mathbf{F} and then thresholding with γ .

0-IPCAC Experimental Evaluation Conclusions Appendix

EEG classification IPCAC

Isotropic Principal Component Analysis Classifier [5]

IPCAC

A linear two-class classification algorithm, based on a new estimation of the Fisher Subspace [1], assuming points drawn by an isotropic Mixture of two Gaussian Functions.

• The Fisher subspace is spanned by the one-dimensional vector defined as follows:

$$\mathbf{F} = \frac{\mu_A - \mu_B}{\|\mu_A - \mu_B\|} \tag{1}$$

<ロ> <同> <同> <同> < 同> < 同>

Training task: In this phase the classifier exploits the training set to estimate the Fisher subspace \mathbf{F} and the thresholding value γ .

Classification task: An unknown test point \mathbf{p} is classified by projecting it on \mathbf{F} and then thresholding with γ .

0-IPCAC Experimental Evaluation Conclusions Appendix

EEG classification IPCAC

IPCA-based Classifier - Training phase

Data whitening

 The probability distribution related to several classification tasks is not mean-centered, and its random variables are often correlated; To avoid this problem data whitening is performed (W is the • whitening matrix).

Fisher subspace estimation

• The whitened training points are employed to compute the class means μ_A and μ_B , and **F** (see Equation (1)).

Thresholding value

$$\gamma = \left\langle \operatorname{argmax}_{\{\bar{\gamma}\} \subseteq \{\mathsf{w} \cdot (\mathsf{p}_i - \tilde{\mu})\}} Score(\bar{\gamma}) \right\rangle$$

æ

6/22

イロト イヨト イヨト イヨト

Theoretical Problems The Algorithm

Theoretical Problems in High Dimensionality

Covariance Matrix Estimation Problem

• Given the matrix $\mathbf{P} \in \Re^{D \times N}$, representing a training dataset $\mathcal{P} = \mathcal{P}_A \cup \mathcal{P}_B, |\mathcal{P}| = N = N_A + N_B$, let α be the ratio D/N;

If $\alpha \approx 1$, the sample covariance matrix $\tilde{\Sigma} = \frac{1}{N-1} \mathbf{P} \mathbf{P}^{T}$ is not a consistent estimator of the population covariance matrix Σ [3].

Theoretical Problems The Algorithm

Theoretical Problems (2)

Noise Problem

- Assuming that $\Sigma = \Sigma^* + \sigma^2 \mathbf{I}$, where Σ^* has rank k < D and $\sigma^2 \mathbf{I}$ represents the contribution of a zero mean Gaussian noise affecting the data;
- Calling $\sigma^2 = \lambda_1 = \ldots = \lambda_{D-k-1} < \ldots < \lambda_D$ the ordered eigenvalues of Σ ;

Only the portion of the spectrum of Σ above $\sigma^2 + \sqrt{\alpha}$ can be correctly estimated from the sample [4].

• Denoting with $ilde{\lambda_1} < \ldots < ilde{\lambda_D}$ the ordered eigenvalues of $ilde{\Sigma}$;

If $\alpha \approx 1$ the estimates of the smallest eigenvalues $\ddot{\lambda}_i$ can be much larger than the real ones, and the corresponding estimated eigenvectors are uncorrelated with the real ones.

(0) (0) (2) (2) (2)

Theoretical Problems The Algorithm

Theoretical Problems (2)

Noise Problem

- Assuming that $\Sigma = \Sigma^* + \sigma^2 I$, where Σ^* has rank k < D and $\sigma^2 I$ represents the contribution of a zero mean Gaussian noise affecting the data;
- Calling $\sigma^2 = \lambda_1 = \ldots = \lambda_{D-k-1} < \ldots < \lambda_D$ the ordered eigenvalues of Σ ;

Only the portion of the spectrum of Σ above $\sigma^2 + \sqrt{\alpha}$ can be correctly estimated from the sample [4].

• Denoting with $ilde{\lambda_1} < \ldots < ilde{\lambda_D}$ the ordered eigenvalues of $ilde{\Sigma}$;

If $\alpha \approx 1$ the estimates of the smallest eigenvalues $\ddot{\lambda}_i$ can be much larger than the real ones, and the corresponding estimated eigenvectors are uncorrelated with the real ones.

Theoretical Problems The Algorithm

Problems with dimensionality reduction

• Dimensionality reduction might delete discriminative information, decreasing the classification performance;

Consider two classes with the shape of parallel pancakes in \Re^D :

If the direction defined by the Fisher subspace in the original space is orthogonal to the subspace π_d defined by the first d ≤ D principal components, the dimensionality reduction process projects the data on π_d, obtaining an isotropic mixture of two completely overlapped Gaussian distributions.

Theoretical Problems The Algorithm

Problems with dimensionality reduction (2)

10/22

Theoretical Problems The Algorithm

O-IPCAC: the algorithm (1)

- To estimate the linear transformation **W**, which represents the partial whitening operator, we apply the Truncated Singular Value Decomposition;
- The *d* largest singular values on the diagonal of \mathbf{Q}_d , and the associated left singular vectors, are employed to project the points in \mathbf{P} on the subspace \mathcal{SP}_d spanned by the columns of \mathbf{U}_d , and to perform the whitening, as follows:

$$\bar{\mathsf{P}}_{\mathsf{W}_d} = q_d \mathsf{Q}_d^{-1} \mathsf{P}_{\perp \mathcal{SP}_d} = q_d \mathsf{Q}_d^{-1} \mathsf{U}_d^T \mathsf{P} = \mathsf{W}_d \mathsf{P}$$

Theoretical Problems The Algorithm

O-IPCAC: the algorithm (2)

• To avoid this information loss, we add to the partially whitened data the residuals (**R**) of the points in **P** with respect to their projections on SP_d :

$$\mathbf{R} = \mathbf{P} - \mathbf{U}_d \mathbf{P}_{\perp S \mathcal{P}_d} = \mathbf{P} - \mathbf{U}_d \mathbf{U}_d^T \mathbf{P}$$
$$\mathbf{\bar{P}}_{\mathbf{W}_D} = \mathbf{U}_d \mathbf{\bar{P}}_{\mathbf{W}_d} + \mathbf{R} = \mathbf{U}_d \mathbf{W}_d \mathbf{P} + \mathbf{P} - \mathbf{U}_d \mathbf{U}_d^T \mathbf{P}$$
$$= \left(q_d \mathbf{U}_d \mathbf{Q}_d^{-1} \mathbf{U}_d^T + \mathbf{I} - \mathbf{U}_d \mathbf{U}_d^T \right) \mathbf{P}$$
$$= \mathbf{W} \mathbf{P}$$

where $\mathbf{W} \in \Re^{D \times D}$ represents the linear transformation that whitens the data along the first *d* principal components, while keeping unaltered the information along the remaining components.

イロト イヨト イヨト イヨト

Theoretical Problems The Algorithm

O-IPCAC: the algorithm (3)

• The Fisher subspace is estimated by exploiting the whitened class means, μ_A and μ_B , obtained by the class means in the original space $\hat{\mu}_A$ and $\hat{\mu}_B$ as follows:

$$\mu_{A} = \mathbf{W}\hat{\mu}_{A}$$

$$= \left(q_{d}\mathbf{U}_{d}\mathbf{Q}_{d}^{-1}\mathbf{U}_{d}^{T} + \mathbf{I} - \mathbf{U}_{d}\mathbf{U}_{d}^{T}\right)\hat{\mu}_{A}$$

$$= q_{d}\mathbf{U}_{d}\mathbf{Q}_{d}^{-1}\mathbf{U}_{d}^{T}\hat{\mu}_{A} + \hat{\mu}_{A} - \mathbf{U}_{d}\mathbf{U}_{d}^{T}\hat{\mu}_{A}$$

- Using these quantities we estimate $\mathbf{f} = \frac{\mu_A \mu_B}{\|\mu_A \mu_B\|}$.
- We process an unknown point p by transforming it with W, and projecting it on f;

$$\mathbf{w} = \mathbf{W}^{\mathsf{T}}\mathbf{f} = q_d \mathbf{U}_d^{\mathsf{T}} \mathbf{Q}_d^{-1} \mathbf{U}_d \mathbf{f} + \mathbf{f} - \mathbf{U}_d^{\mathsf{T}} \mathbf{U}_d \mathbf{f}$$

• Given a thresholding value γ , **p** is assigned to class A if $\mathbf{w} \cdot \mathbf{p} < \gamma$, to class B otherwise.

Theoretical Problems The Algorithm

0-IPCAC: the algorithm (4)

• We never explicitly compute the matrix **W**, but we perform the matrix times vector operations thus preventing a quadratic time/space complexity.

< ≣ >

æ

Theoretical Problems The Algorithm

The Online algorithm

- With training sets of high cardinality, or when mini-batches of training data are dynamically supplied, subsequent training phases must be applied to update the classification model.
- To this aim, the algorithm has been extended to perform **online/incremental** training by updating:

 $N_k, N_{A,k}, N_{B,k}$: number of training points seen until the k-th training phase;

- $\mu_k, \hat{\mu}_{A,k}, \hat{\mu}_{B,k}$: the means employed to obtain the centered sets $\mathcal{P}_k, \mathcal{P}_{A,k}$, and $\mathcal{P}_{B,k}$ respectively;
- $U_{d_k}, Q_{d_k}, V_{d_k}$: the SVD matrices related to \mathcal{P}_k , truncated to d_k principal components;

 σ_A, σ_B : the standard deviations of the projections $\mathbf{w}_k^T \mathbf{P}_{A,k}$ and $\mathbf{w}_k^T \mathbf{P}_{B,k}$.

- < 回 > < 回 > < 回 >

EEG Dataset Results

Data Description

- The data used in our tests have been distributed by the organizers of the MLSP 2010 [2] competition and consist of EEG brain signals collected while the subject viewed satellite images and tried to detect those containing a predefined target:
 - 64 channels of EEG data;
 - The total number of samples is 176378, and the sampling rate is 256Hz;
 - During the EEG recording 2775 satellite images were shown, partitioned in 75 activation blocks with 37 images per block;
 - The classifier must analyze the brain activity to recognize those images containing the target.

<ロ> <同> <同> <同> < 同> < 同>

EEG Dataset Results

Pre-processing

- We pre-processed each channel with a Gaussian filter with cut-frequency of 2.2Hz, and we subtracted the filtered data from the original one to obtain high-pass filtered signals.
- These signals were then used to extract 64 × 97 image blocks, where each image block starts exactly 65 time samples (≈ 250ms) after the corresponding image trigger.
- The extracted blocks are serialized in 2775 vectors in \Re^{6208} , of which only 58 points represent images with target.

3 ×

- < E → - -

EEG Dataset Results

Performance evalutation

To evaluate the performance of our classifier:

- We computed the Receiver Operating Characteristic (RDC) curve;
- We estimated the Area Under the Curve (AUC).

To obtain an unbiased evaluation, we performed ten-fold cross validation, and we averaged the computed sensitivity and specificity values.

EEG Dataset Results

Results and Comparison

Table: AUC per classifier

Classifier	AUC
0-IPCAC	0.9541
OISVM	0.8766
SOP	0.8479
ILDA	0.5315
Alma	0.5110
PA	0.4835
Perceptron	0.4507

・ロン ・団 と ・ 国 と ・ 国 と

æ

References

Conclusions and Future Works

Conclusions

We proposes an online/incremental linear binary classifier that has been developed to deal with:

- High dimensional data;
- 2 Classification problems where the cardinality of the point set is high;
- Oata dynamically supplied;
- 4 Highly unbalanced training sets whose cardinality is lower than the space dimensionality.

These peculiarities allow to manage EEG classification problem:

- Without focusing on complex features extraction/selection techniques;
- 2 Dealing with the raw data;
- 3 Achieving good results.

イロト イヨト イヨト イヨト

References

Conclusions and Future Works

Future Works

- Apply our method to biological data (such as Microarray) where the datasets are characterized by a very large ratio between dimension and training points.
- Develop an adaptive version of O-IPCAC, to cope with classification problems where the probability distribution underlying the data changes with time.

References

References I

- S. C. Brubaker and S. Vempala. Isotropic pca and affine-invariant clustering. CoRR, abs/0804.3575, 2008.
- K. Hild, M. Kurimo, and V. Calhoun. The sixth annual mlsp competition. In *MLSP '10*, Sept. 2010.
- I. M. Johnstone and A. Y. Lu.
 Sparse principal components analysis.
 Journal of the American Statistical Association, 2004.

References

References II

Asymptotics of sample eigenstructure for a large dimensional spiked covariance model.

Statistica Sinica, 2007.

A. Rozza, G. Lombardi, and E. Casiraghi. Novel ipca-based classiers and their application to spam

filtering.

In Proceedings of the 9th International Conference on Intelligent System Design and Applications (ISDA09). IEEE CS, 2009.

References

Any questions?

æ

Whitening Process

- estimate the expectation $\tilde{\boldsymbol{\mu}} = N^{-1} \sum_{i} \mathbf{p}_{i}$, and the covariance matrix $\tilde{\boldsymbol{\Sigma}} = N^{-1} \sum_{i} (\mathbf{p}_{i} \tilde{\boldsymbol{\mu}}) (\mathbf{p}_{i} \tilde{\boldsymbol{\mu}})^{T}$;
- estimate the principal components through the covariance matrix Eigen-decomposition $\mathbf{X} \mathbf{\Lambda} \mathbf{X}^{T} = \tilde{\Sigma}$;
- **3** estimate the whitening matrix as $\mathbf{W} = \mathbf{X} \mathbf{\Lambda}^{-\frac{1}{2}} \mathbf{X}^{T}$.

