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EEG classification

Recently this problem is raising a wide interest since it is the
fundamental step of Brain to Computer Interface (BCI)
systems: the translatation of the brain activity into commands
for computers;

The task of EEG classification is a hard problem:

The data are high dimensional;
The classes to be discriminated are often highly unbalanced;
The selection of discriminative information is difficult;
The cardinality of the training set is often lower than the space
dimensionality.
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Existing Approaches

Feature extraction/selection techniques are generally used;

This approach causes loss of discriminative information, and
might affect the classification accuracy.

Different Approach

Develop an efficient classifier that deals with high dimensional
datasets whose cardinality is lower than the space
dimensionality.

Apply it to the raw data.
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Isotropic Principal Component Analysis Classifier [5]

IPCAC

A linear two-class classification algorithm, based on a new estimation of the
Fisher Subspace [1], assuming points drawn by an isotropic Mixture of two
Gaussian Functions.

The Fisher subspace is spanned by the one-dimensional vector defined as

follows:

F =
µA − µB

‖µA − µB‖
(1)

Training task: In this phase the classifier exploits the training set to estimate
the Fisher subspace F and the thresholding value γ.

Classification task: An unknown test point p is classified by projecting it on F
and then thresholding with γ.
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IPCA-based Classifier - Training phase

Data whitening

The probability distribution related to several classification tasks is not
mean-centered, and its random variables are often correlated; To avoid
this problem data whitening is performed (W is the whitening matrix ).

Fisher subspace estimation

The whitened training points are employed to compute the class means
µA and µB , and F (see Equation (1)).

Thresholding value

γ =

*
argmax

{γ̄}⊆{w·(pi−µ̃)}
Score(γ̄)

+
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Theoretical Problems in High Dimensionality

Covariance Matrix Estimation Problem

Given the matrix P ∈ <D×N , representing a training dataset
P = PA ∪PB , |P | = N = NA + NB , let α be the ratio D/N;

If α ≈ 1, the sample covariance matrix Σ̃ = 1
N−1PPT is not a

consistent estimator of the population covariance matrix Σ [3].
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Theoretical Problems (2)

Noise Problem

Assuming that Σ = Σ∗ + σ2I, where Σ∗ has rank k < D and σ2I
represents the contribution of a zero mean Gaussian noise affecting the
data;

Calling σ2 = λ1 = . . . = λD−k−1 < . . . < λD the ordered eigenvalues of
Σ;

Only the portion of the spectrum of Σ above σ2 +
√
α can be correctly

estimated from the sample [4].

Denoting with λ̃1 < . . . < λ̃D the ordered eigenvalues of Σ̃;

If α ≈ 1 the estimates of the smallest eigenvalues λ̃i can be much larger than
the real ones, and the corresponding estimated eigenvectors are uncorrelated
with the real ones.

Alessandro Rozza O-IPCAC 8/22



Introduction
O-IPCAC

Experimental Evaluation
Conclusions

Appendix

Theoretical Problems
The Algorithm

Theoretical Problems (2)

Noise Problem

Assuming that Σ = Σ∗ + σ2I, where Σ∗ has rank k < D and σ2I
represents the contribution of a zero mean Gaussian noise affecting the
data;

Calling σ2 = λ1 = . . . = λD−k−1 < . . . < λD the ordered eigenvalues of
Σ;

Only the portion of the spectrum of Σ above σ2 +
√
α can be correctly

estimated from the sample [4].

Denoting with λ̃1 < . . . < λ̃D the ordered eigenvalues of Σ̃;

If α ≈ 1 the estimates of the smallest eigenvalues λ̃i can be much larger than
the real ones, and the corresponding estimated eigenvectors are uncorrelated
with the real ones.

Alessandro Rozza O-IPCAC 8/22



Introduction
O-IPCAC

Experimental Evaluation
Conclusions

Appendix

Theoretical Problems
The Algorithm

Problems with dimensionality reduction

Dimensionality reduction might delete discriminative
information, decreasing the classification performance;

Consider two classes with the shape of parallel pancakes in <D :

1 if the direction defined by the Fisher subspace in the original
space is orthogonal to the subspace πd defined by the first
d ≤ D principal components, the dimensionality reduction
process projects the data on πd , obtaining an isotropic
mixture of two completely overlapped Gaussian distributions.
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Problems with dimensionality reduction (2)

Figure: Parallel Pancakes
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O-IPCAC: the algorithm (1)

To estimate the linear transformation W, which represents the
partial whitening operator, we apply the Truncated Singular
Value Decomposition;

The d largest singular values on the diagonal of Qd , and the
associated left singular vectors, are employed to project the
points in P on the subspace SPd spanned by the columns of
Ud , and to perform the whitening, as follows:

P̄Wd
= qdQ−1

d P⊥SPd
= qdQ−1

d UT
d P = WdP
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O-IPCAC: the algorithm (2)

To avoid this information loss, we add to the partially
whitened data the residuals (R) of the points in P with
respect to their projections on SPd :

R = P−UdP⊥SPd
= P−UdUT

d P

P̄WD
= Ud P̄Wd

+ R = UdWdP + P−UdUT
d P

=
(
qdUdQ−1

d UT
d + I−UdUT

d

)
P

= WP

where W ∈ <D×D represents the linear transformation that
whitens the data along the first d principal components, while
keeping unaltered the information along the remaining
components.
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O-IPCAC: the algorithm (3)

The Fisher subspace is estimated by exploiting the whitened class means,
µA and µB , obtained by the class means in the original space µ̂A and µ̂B

as follows:

µA = Wµ̂A

=
“
qdUdQ−1

d UT
d + I−UdUT

d

”
µ̂A

= qdUdQ−1
d UT

d µ̂A + µ̂A −UdUT
d µ̂A

Using these quantities we estimate f = µA−µB

‖µA−µB‖ .

We process an unknown point p by transforming it with W, and
projecting it on f;

w = WT f = qdUT
d Q−1

d Ud f + f −UT
d Ud f

Given a thresholding value γ, p is assigned to class A if w · p < γ, to class
B otherwise.
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O-IPCAC: the algorithm (4)

We never explicitly compute the matrix W, but we perform
the matrix times vector operations thus preventing a quadratic
time/space complexity.
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The Online algorithm

With training sets of high cardinality, or when mini-batches of
training data are dynamically supplied, subsequent training
phases must be applied to update the classification model.

To this aim, the algorithm has been extended to perform
online/incremental training by updating:

Nk ,NA,k ,NB,k : number of training points seen until the k-th
training phase;

µk , µ̂A,k , µ̂B,k : the means employed to obtain the centered
sets Pk , PA,k , and PB,k respectively;

Udk
,Qdk

,Vdk
: the SVD matrices related to Pk , truncated to

dk principal components;
σA, σB : the standard deviations of the projections

wT
k PA,k and wT

k PB,k .
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Data Description

The data used in our tests have been distributed by the
organizers of the MLSP 2010 [2] competition and consist of
EEG brain signals collected while the subject viewed satellite
images and tried to detect those containing a predefined
target:

64 channels of EEG data;
The total number of samples is 176378, and the sampling rate
is 256Hz;
During the EEG recording 2775 satellite images were shown,
partitioned in 75 activation blocks with 37 images per block;
The classifier must analyze the brain activity to recognize
those images containing the target.
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Pre-processing

We pre-processed each channel with a Gaussian filter with
cut-frequency of 2.2Hz, and we subtracted the filtered data
from the original one to obtain high-pass filtered signals.

These signals were then used to extract 64× 97 image blocks,
where each image block starts exactly 65 time samples
(≈ 250ms) after the corresponding image trigger.

The extracted blocks are serialized in 2775 vectors in <6208,
of which only 58 points represent images with target.
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Performance evalutation

To evaluate the performance of our classifier:

We computed the Receiver Operating Characteristic (ROC)
curve;

We estimated the Area Under the Curve (AUC).

To obtain an unbiased evaluation, we performed ten-fold cross
validation, and we averaged the computed sensitivity and
specificity values.
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Results

Figure: ROC curves
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Results and Comparison

Table: AUC per classifier

Classifier AUC

O-IPCAC 0.9541
OISVM 0.8766

SOP 0.8479

ILDA 0.5315

Alma 0.5110

PA 0.4835

Perceptron 0.4507
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Conclusions

We proposes an online/incremental linear binary classifier that has been
developed to deal with:

1 High dimensional data;

2 Classification problems where the cardinality of the point set is high;

3 Data dynamically supplied;

4 Highly unbalanced training sets whose cardinality is lower than the space
dimensionality.

These peculiarities allow to manage EEG classification problem:

1 Without focusing on complex features extraction/selection techniques;

2 Dealing with the raw data;

3 Achieving good results.
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Future Works

Apply our method to biological data (such as Microarray)
where the datasets are characterized by a very large ratio
between dimension and training points.

Develop an adaptive version of O-IPCAC, to cope with
classification problems where the probability distribution
underlying the data changes with time.
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Whitening Process

1 estimate the expectation µ̃ = N−1
∑

i pi , and the covariance
matrix Σ̃ = N−1

∑
i (pi − µ̃)(pi − µ̃)T ;

2 estimate the principal components through the covariance
matrix Eigen-decomposition XΛXT = Σ̃;

3 estimate the whitening matrix as W = XΛ− 1
2 XT .

Back
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