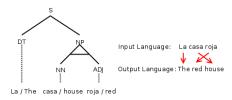
COMPLETE SEARCH SPACE EXPLORATION FOR SITG INSIDE PROBABILITY


Guillem Gascó, Joan-Andreu Sánchez, José-Miguel Benedí {ggasco,jandreu,jbenedi}@dsic.upv.es

Introduction

- Stochastic Inversion Transduction Grammars: $\{\Sigma, \Delta, N, S, R\}$
- Σ , Δ input and output terminals
- N non-terminals ans $S \in N$ initial symbol
- *R* probabilistic rules of the form:
 - * $A \rightarrow a/b, A \in N, a \in \Sigma \cup \{\epsilon\}, b \in \Delta \cup \{\epsilon\}$
 - * $A \rightarrow [BC], A, B, C \in N$
 - * $A \rightarrow \langle BC \rangle$, $A, B, C \in N$ $(A \rightarrow BC)$ in the input language and $A \rightarrow CB$ in the output language)

• Used to parse two strings simultaneously.

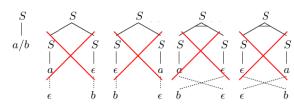
MODIFIED PARSING ALGORITHM FOR SITGS

1. Initialization

$$\begin{array}{lcl} \mathcal{E}_{i,i+1,k,k+1}[A] & = & p(A \to x_{i+1}/y_{k+1}) & 0 \leq i < |x| \; 0 \leq k < |y| \\ \mathcal{E}_{i,i+1,k,k}[A] & = & p(A \to x_{i+1}/\epsilon) & 0 \leq i < |x| \; 0 \leq k \leq |y| \\ \mathcal{E}_{i,i,k,k+1}[A] & = & p(A \to \epsilon/y_{k+1}) & 0 \leq i < |x| \; 0 \leq k \leq |y| \\ \end{array}$$

2. Recursion

2. Recursion For all
$$A \in N$$
 and i, j, k, l such that
$$\begin{cases} 0 \le i \le |x|, & 0 \le j \le |x| - i \\ 0 \le k \le |y|, & 0 \le l \le |y| - k \\ j + l > 2, & j + l \ge 2 \end{cases}$$


$$\mathcal{E}_{i,i+j,k,k+l}[A] = \mathcal{E}_{i,i+j,k,k+l}^{[]}[A] + \mathcal{E}_{i,i+j,k,k+l}^{\langle \rangle}[A]$$
, where

$$\mathcal{E}_{i,i+j,k,k+l}^{\langle \rangle}[A] = \sum_{B,C \in N} p(A \to \langle BC \rangle) \, \mathcal{E}_{i,i+I,k+K,k+l}[B] \, \mathcal{E}_{i+I,i+j,k,k+K}[C]$$

$$1 \le I \le j, 1 \le K \le l$$

$$I((j-I)+K(l-K)) \ne 0 \longrightarrow ((j-I)+K) \times (I+(l-K)) \ne 0$$

• Some valid parse trees cannot be explored:

- Two other restrictions are substituted to guarantee termination.
- The modifications proposed allow the algorithm to explore the whole search space.
- Time complexity: $O(N^3|x|^3|y|^3)$
- The correctness of the modified algorithm has been proved (See the paper).

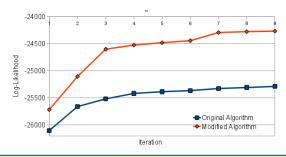
EXPERIMENTS

- Bilingual corpora used:
- IWSLT2009 Chinese-English

Set	Stat.	Ch	En	-
	Sents	42	2K	Set
Tr.	Words	330K	380K	
	Sents	511		Tr
Test	Words	3K	3K	

-	Hansard	French-English	ŀ
---	---------	----------------	---

Set	Stat.	Fr	En	
	Sents	997K		
Tr	Words	16.5M	14.2M	


- Also using bracketing information (results between []).
- A: % of sentences for which the original algorithm cannot find the most probable parse tree.

• B: % of sentences not parsed by the original algorithm.

Experiment	A	В		Experiment	A
Ch - En	36.25%	0.24%	-	Fr - En	27.73%
[Ch] - En	37.21%	1.4%		[Fr] - En	28.06%
Ch - [En]	36.97%	1.02%		Fr - [En]	28.51%
[Ch] - [En]	40.93%	3.92%		[Fr] - [En]	30.56%

• Both algorithms have been tested for ITG inference purposes by using the Viterbi reestimation process.

• Loglikelihood of the IWSLT test for each algorithm:

CONCLUSIONS

- Original parsing algorithms for ITGs cannot explore the whole search space.
- The proposed modification have been proved to solve this problem.
- The non-explored trees are important in real scenarios.
- The modified algorithm performs better for inference purposes.

ACKNOWLEDGEMENTS

Supported by the EC (FEDER/FSE), the Spanish MICINN and MI-TvC and the Generalitat Valenciana under projects MIPRCV, iTrans2 and grant Prometeo 2009. Also supported by the scholarship BFPI/2007/117.