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1. In the experiment we used an 

open source package GNU 

Linear Programming Kit (GLPK) 

for optimization problem. 

2. We conducted experiment  by 

using 13 data sets from the UCI 

repository. 

Maximum a Posteriori (MAP) has been adopted and studied in pattern recognition 

for the purpose of classification.  In MAP classifier the information of a posteriori 

probability P(y|x) is essential, but calculation for estimating P(y|x) is not easy. 

Beside the cost function should be Strict Sense Bayesian (SSB),  it also should be 

solved by non linear optimization. We propose a new approach for classification 

problem based on MAP than can be solved by linear programming.     
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We do not estimate P(y|x) directly for classification, but we estimate a

surrogate function w(x,y) that satisfies

Suerri et al. proposed a cost function C(h,d) to estimate P(y|x) that can be 

reformulated for binary classification problem as follows:

where h(x) is a 2-dimensional vector of functions of x to be optimized and       is a 

Kronecker delta. The function h(x) becomes a posteriori if and only if  C(h,d) is 

SSB and can be expressed as follows:

where           is any positive function                               that doesn’t depend on h. 
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Let   y be a category to be estimated from a data  x,

P(x) is a prior probability density function (p.d.f) of  x,

P(y) is  a prior probability of  y,

P(x|y) is a conditional p.d.f of  x given y, and

P(y|x) is a posteriori of  y. 

Bayes theorem can be derived from the joint probability of  x and y is

The expectation value of a function  f(x) in a data x is written as:

A classifier system is designed to estimate a category      for an unlearned pattern  x . 

The MAP estimates category      that is defined as the mode of a posterior

probability as follows:
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1. We proposed a new approach for classification problem

based on MAP. Instead of estimating P(y|x), we use a

surrogate function w(x,y) that behaves in a similar way to

MAP Classier.

2. The advantage of this approach is the cost function can be

directly optimized with linear programming and we have

only one parameter to adjust the system.

3. The experiment using 13 data sets shows that the proposed

method has promising performance and it is competitive

enough to the other state-of-the-art classification methods.

1. The experimental results show that our proposed method has

promising performance. It is competitive to the others and

superior on some data sets (banana, breast cancer and titanic).

2. The computational complexity shows that MAPLP is slower than

LIBSVM (library for support vector machines). However,

LIBSVM is a specialized program for SVM and on the other

hand we used GLPK that is a general purpose library. If we

compare to KMAP (the method is also based on MAP and we

used GLPK) MAPLP is faster.

3. The cost function of SVM to obtain the optimal separating

hyperplane is

The slack variables expresses the hinge loss, where

The concept of hinge loss in SVM is quite similar to our

criterion. We have the following arithmetic relation:

In both criteria the classification functions are substituted into a.

Therefore the equation below is considered as a hinge loss.

4. We compare our proposed method 

(MAPLP) with other methods:  Support 

Vector Machine (SVM), Kernelized

Maximum a Posteriori (KMAP), a 

single RBF classier, AdaBoost (AB), 

regularized AdaBoost (ABR),  and 

Kernel Fisher Discriminant (KFD).
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The problem of providing cost function to estimate a posteriori is that it

should be SSB (it makes the freedom to choose a cost function to be

restricted) and it couldn’t be solved by using linear optimization.

Our  new approach is not to estimate 

P(y|x) directly for classification, but use 

a surrogate function w(x,y) that satisfies:

Consider  a set of samples                  

and restrict a problem to binary 

classification, i.e.                  ..

The criterion of             is written as:

The solution of the optimization 

problem above shows             behaves in 

similar way as MAP, where 
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We assume that the function              is 

defined by using a kernel function  as 

follows

where              is Gaussian kernel, i.e. 

The parameter       determines the width 

of the Gaussian kernel and in the 

training mode we adjust it for the set of 

pattern samples.

By exchanging the ensemble mean by 

sample mean the criterion becomes
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To simplify the calculation in linear 

programming problem, the condition                                           

could be approximated by

if                 .  

A slack variables             is introduced, 

then we have

Finally we have a linear programming 

problem of 3N variables  and  that can 

be expressed as follows:
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3. To estimate parameter       for each data 

set  we used 5 fold cross validation. We 

used the first  5 realizations of train 

data for validation. For each realization 

we performed a cross validation and 

then we chose a median of the best 

values of parameter (with least error).



 
   
   
   

.

111

110

111

1,
















xPxPif

xPxPif

xPxPif

xw

x


